cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A235693 Semiprimes which have one or more occurrences of exactly five different digits.

Original entry on oeis.org

10237, 10238, 10239, 10249, 10265, 10279, 10294, 10297, 10327, 10342, 10345, 10347, 10349, 10358, 10367, 10378, 10379, 10389, 10394, 10397, 10423, 10435, 10462, 10473, 10483, 10489, 10493, 10495, 10497, 10523, 10537, 10543, 10546, 10547, 10562, 10573, 10579
Offset: 1

Views

Author

Colin Barker, Jan 14 2014

Keywords

Comments

The first term having a repeated digit is 100235.
The first term that is a square is 12769. - Robert Israel, Jul 06 2018

Crossrefs

Programs

  • Maple
    # to get all terms with 5 digits S:= combinat:-choose([$0..9],5):
    f:= proc(x) local s,L;
          L:= convert(x,base,5);      if nops(L) < 5 then L:= [op(L),0$(5-nops(L))] fi;      if nops(convert(L,set))<5 then return NULL fi;
          op(select(t -> t > 10^4 and numtheory:-bigomega(t)=2, map(s -> add(s[L[i]+1]*10^(i-1),i=1..5),S)))
    end proc:
    sort(map(f, [$1..5^5-1])); # Robert Israel, Jul 06 2018
  • Mathematica
    Select[Range[10000,11000],PrimeOmega[#]==2&&Count[DigitCount[#],0]==5&] (* Harvey P. Dale, Apr 08 2015 *)
  • PARI
    list(lim)=my(v=List(), t); forprime(p=2, sqrt(lim), t=p; forprime(q=p, lim\t, listput(v, t*q))); vecsort(Vec(v)) \\ From A001358
    b=list(15000); s=[]; for(n=1, #b, if(#vecsort(eval(Vec(Str(b[n]))),,8)==5, s=concat(s, b[n]))); s