A235693 Semiprimes which have one or more occurrences of exactly five different digits.
10237, 10238, 10239, 10249, 10265, 10279, 10294, 10297, 10327, 10342, 10345, 10347, 10349, 10358, 10367, 10378, 10379, 10389, 10394, 10397, 10423, 10435, 10462, 10473, 10483, 10489, 10493, 10495, 10497, 10523, 10537, 10543, 10546, 10547, 10562, 10573, 10579
Offset: 1
Links
- Robert Israel, Table of n, a(n) for n = 1..6240
Programs
-
Maple
# to get all terms with 5 digits S:= combinat:-choose([$0..9],5): f:= proc(x) local s,L; L:= convert(x,base,5); if nops(L) < 5 then L:= [op(L),0$(5-nops(L))] fi; if nops(convert(L,set))<5 then return NULL fi; op(select(t -> t > 10^4 and numtheory:-bigomega(t)=2, map(s -> add(s[L[i]+1]*10^(i-1),i=1..5),S))) end proc: sort(map(f, [$1..5^5-1])); # Robert Israel, Jul 06 2018
-
Mathematica
Select[Range[10000,11000],PrimeOmega[#]==2&&Count[DigitCount[#],0]==5&] (* Harvey P. Dale, Apr 08 2015 *)
-
PARI
list(lim)=my(v=List(), t); forprime(p=2, sqrt(lim), t=p; forprime(q=p, lim\t, listput(v, t*q))); vecsort(Vec(v)) \\ From A001358 b=list(15000); s=[]; for(n=1, #b, if(#vecsort(eval(Vec(Str(b[n]))),,8)==5, s=concat(s, b[n]))); s
Comments