cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A235699 a(n+1) = a(n) + (a(n) mod 10) + 1, a(0) = 0.

Original entry on oeis.org

0, 1, 3, 7, 15, 21, 23, 27, 35, 41, 43, 47, 55, 61, 63, 67, 75, 81, 83, 87, 95, 101, 103, 107, 115, 121, 123, 127, 135, 141, 143, 147, 155, 161, 163, 167, 175, 181, 183, 187, 195, 201, 203, 207, 215, 221, 223, 227, 235, 241, 243, 247, 255, 261, 263, 267, 275, 281, 283, 287, 295, 301, 303, 307, 315, 321, 323, 327, 335, 341, 343, 347, 355
Offset: 0

Views

Author

M. F. Hasler, Jan 14 2014

Keywords

Comments

Instead of (a(n) mod 10) one might say "the last (decimal) digit of a(n)".
Apart from the initial term, the first differences form the periodic sequence (2,4,8,6)[repeated].
Without the final "+ 1" and starting with 1, one gets A102039: Indeed, the last digit cycles through 2,4,8,6 and therefore the sequence never becomes constant.

Crossrefs

Programs

  • Mathematica
    NestList[#+Mod[#,10]+1&,0,80] (* or *) Join[{0},LinearRecurrence[{2,-2,2,-1},{1,3,7,15},80]] (* Harvey P. Dale, Dec 21 2014 *)
  • PARI
    print1(a=0);for(i=1,99,print1(","a+=a%10+1))

Formula

a(n) = 5*n-6+cos(n*Pi/2)+2*sin(n*Pi/2), for n>0. - Giovanni Resta, Jan 15 2014
From Colin Barker, Jan 16 2014: (Start)
a(n) = -6+(1/2+i)*(-i)^n+(1/2-i)*i^n+5*n for n>0 where i=sqrt(-1).
a(n) = 2*a(n-1)-2*a(n-2)+2*a(n-3)-a(n-4) for n>4.
G.f.: x*(5*x^3+3*x^2+x+1) / ((x-1)^2*(x^2+1)). (End)