cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A235728 a(n) = |{0 < k < n - 2: 2*m + 1, m*(m+1) - prime(m) and m*(m+1) + prime(m) are all prime with m = phi(k) + phi(n-k)/2}|, where phi(.) is Euler's totient function.

Original entry on oeis.org

0, 0, 0, 0, 0, 2, 3, 2, 4, 4, 4, 4, 4, 5, 3, 6, 4, 7, 4, 3, 6, 5, 6, 4, 7, 4, 7, 3, 5, 5, 5, 6, 6, 6, 3, 6, 3, 4, 2, 2, 4, 3, 4, 5, 4, 3, 6, 4, 2, 4, 2, 4, 3, 3, 6, 4, 2, 6, 8, 6, 10, 4, 6, 7, 4, 6, 6, 8, 6, 6, 2, 9, 5, 9, 10, 12, 4, 10, 6, 10, 6, 9, 5, 11, 10, 7, 10, 10, 6, 9, 11, 7, 8, 8, 13, 6, 5, 5, 6, 9
Offset: 1

Views

Author

Zhi-Wei Sun, Jan 15 2014

Keywords

Comments

Conjecture: (i) a(n) > 0 for all n > 5, and a(n) = 1 only for n = 191.
(ii) If n > 8 is not equal to 32, then there is a positive integer k < n - 2 such that 2*m + 1, m*(m+1) - prime(m) and m*(m+1) + prime(m) are all prime, where m = sigma(k) + phi(n-k)/2, and sigma(k) is the sum of all positive divisors of k.
(iii) If n > 444, then there is a positive integer k < n such that 2*m + 1, m^2 - prime(m) and m^2 + prime(m) are all prime, where m = sigma(k) + phi(n-k).
Clearly, part (i) of the conjecture implies that there are infinitely many odd primes p = 2*m + 1 with m*(m+1) - prime(m) = (p^2-1)/4 - prime((p-1)/2) and m*(m+1) + prime(m) = (p^2-1)/4 + prime((p-1)/2) both prime.

Examples

			a(6) = 2 since phi(1) + phi(5)/2 = phi(3) + phi(3)/2 = 3 with 2*3 + 1 = 7, 3*4 - prime(3) = 7 and 3*4 + prime(3) = 17 all prime.
a(191) = 1 since phi(153) + phi(38)/2 = 105 with 2*105 + 1 = 211, 105*106 - prime(105) = 11130 - 571 = 10559 and 105*106 + prime(105) = 11130 + 571 = 11701 all prime.
		

Crossrefs

Programs

  • Mathematica
    q[n_]:=PrimeQ[2n+1]&&PrimeQ[n(n+1)-Prime[n]]&&PrimeQ[n(n+1)+Prime[n]]
    f[n_,k_]:=EulerPhi[k]+EulerPhi[n-k]/2
    a[n_]:=Sum[If[q[f[n,k]],1,0],{k,1,n-3}]
    Table[a[n],{n,1,100}]