A235774 Let b(k) = A164555(k)/A027642(k), the sequence of "original" Bernoulli numbers with -1 instead of A164555(0)=1; then a(n) = numerator of the n-th term of the binomial transform of the b(k) sequence.
-1, -1, 1, 1, 59, 3, 169, 5, 179, 7, 533, 9, 26609, 11, 79, 13, 3523, 15, 56635, 17, -168671, 19, 857273, 21, -236304031, 23, 8553247, 25, -23749438409, 27, 8615841677021, 29, -7709321025917, 31, 2577687858559, 33, -26315271552988224913
Offset: 0
Programs
-
Mathematica
b[0] = -1; b[1] = 1/2; b[n_] := BernoulliB[n]; a[n_] := Sum[Binomial[n, k]*b[k], {k, 0, n}] // Numerator; Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Jan 30 2014 *)
Comments