A235775 a(n) = A047842(A047842(n)), say what you see, once repeated.
1011, 21, 1112, 1113, 1114, 1115, 1116, 1117, 1118, 1119, 1031, 1112, 3112, 3113, 3114, 3115, 3116, 3117, 3118, 3119, 102112, 3112, 22, 211213, 211214, 211215, 211216, 211217, 211218, 211219, 102113, 3113, 211213, 1213, 211314, 211315, 211316, 211317, 211318
Offset: 0
Examples
a(10) = A047842(1011) = 1031; a(11) = A047842(21) = 1112; a(12) = A047842(1112) = 3112; a(100) = A047842(2011) = 102112; a(101) = A047842(1021) = 102112; a(102) = A047842(101112) = 104112. For n = 20231231, digits of the date 2023-12-31, a(n) = 10213223 = A047842(n) because this is a fixed point of A047842. Since the order of the digits of n does not matter and there are no leading zeros, this holds also for the numbers resulting from notation dd.mm.yyyy or mm/dd/yyyy. - _M. F. Hasler_, Jan 11 2024
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 0..10000
Programs
-
Haskell
a235775 = a047842 . a047842
-
PARI
A235775(n) = A047842(A047842(n)) \\ M. F. Hasler, Jan 11 2024
-
Python
def A235775(n): s = str(n) s = ''.join(str(s.count(d))+d for d in sorted(set(s))) return int(''.join(str(s.count(d))+d for d in sorted(set(s)))) # Chai Wah Wu, Feb 12 2023
Formula
From M. F. Hasler, Jan 11 2024: (Start)
a(n) = a(A328447(n)) = a(m) for all n and all m having the same digits as n, considering their respective multiplicity.
Comments