A235795 Triangle read by rows T(n,k) in which row n gives the trajectory of n in Collatz problem including the trajectory [1, 4, 2, 1] for n = 1.
1, 4, 2, 1, 2, 1, 3, 10, 5, 16, 8, 4, 2, 1, 4, 2, 1, 5, 16, 8, 4, 2, 1, 6, 3, 10, 5, 16, 8, 4, 2, 1, 7, 22, 11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1, 8, 4, 2, 1, 9, 28, 14, 7, 22, 11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1, 10, 5, 16, 8, 4, 2, 1, 11, 34, 17, 52, 26, 13
Offset: 1
Examples
The irregular triangle begins: 1,4,2,1; 2,1; 3,10,5,16,8,4,2,1; 4,2,1; 5,16,8,4,2,1; 6,3,10,5,16,8,4,2,1; 7,22,11,34,17,52,26,13,40,20,10,5,16,8,4,2,1; 8,4,2,1; 9,28,14,7,22,11,34,17,52,26,13,40,20,10,5,16,8,4,2,1; 10,5,16,8,4,2,1; 11,34,17,52,26,13,40,20,10,5,16,8,4,2,1; 12,6,3,10,5,16,8,4,2,1; 13,40,20,10,5,16,8,4,2,1; 14,7,22,11,34,17,52,26,13,40,20,10,5,16,8,4,2,1; ...
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..11449 (rows 1..250, flattened)
- Index entries for sequences related to 3x+1 (or Collatz) problem
- Index entries for sequences related to Benford's law
Programs
-
Mathematica
Prepend[Array[NestWhileList[If[EvenQ[#], #/2, 3 # + 1] &, #, # > 1 &] &, 10, 2], NestWhileList[If[EvenQ[#], #/2, 3 # + 1] &, 1, # > 1 &, {2, 1}]] // Flatten (* Michael De Vlieger, Oct 27 2021 *)
-
PARI
f(n) = if (n%2, 3*n+1, n/2); \\ A014682 row(n) = {my(list=List()); listput(list, n); until(n==1, n = f(n); listput(list, n)); Vec(list);} \\ Michel Marcus, Sep 10 2021
Comments