A235798 Triangle read by rows: T(n,k) = number of occurrences of k in all overpartitions of n.
2, 4, 2, 10, 4, 2, 20, 8, 4, 2, 38, 16, 8, 4, 2, 68, 30, 16, 8, 4, 2, 118, 52, 28, 16, 8, 4, 2, 196, 88, 48, 28, 16, 8, 4, 2, 318, 144, 82, 48, 28, 16, 8, 4, 2, 504, 230, 132, 80, 48, 28, 16, 8, 4, 2, 782, 360, 208, 128, 80, 48, 28, 16, 8, 4, 2, 1192, 552, 324, 202, 128, 80, 48, 28, 16, 8, 4, 2
Offset: 1
Examples
Triangle begins: 2; 4, 2; 10, 4, 2; 20, 8, 4, 2; 38, 16, 8, 4, 2; 68, 30, 16, 8, 4, 2; ...
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..1275 (first 50 rows)
Programs
-
PARI
A(n)={my(p=prod(k=1, n, (1 + x^k)/(1 - x^k) + O(x*x^n))); Mat(vector(n, k, Col(2*(p + O(x*x^(n-k)))*x^k/((1 - x^k)*(1 + x^k)), -n)))} { my(T=A(10)); for(n=1, #T, print(T[n, 1..n])) } \\ Andrew Howroyd, Feb 19 2020
Formula
G.f. of column k: 2*(x^k/((1 - x^k)*(1 + x^k))) * Product_{j>0} (1 + x^j)/(1 - x^j). - Andrew Howroyd, Feb 19 2020
Extensions
Terms a(22) and beyond from Andrew Howroyd, Feb 19 2020
Comments