A235801 Length of n-th horizontal line segment in a diagram of a two-dimensional version of the 3x+1 (or Collatz) problem.
0, 1, 2, 3, 7, 5, 6, 7, 8, 9, 17, 11, 12, 13, 14, 15, 27, 17, 18, 19, 20, 21, 37, 23, 24, 25, 26, 27, 47, 29, 30, 31, 32, 33, 57, 35, 36, 37, 38, 39, 67, 41, 42, 43, 44, 45, 77, 47, 48, 49, 50, 51, 87, 53, 54, 55, 56, 57, 97, 59, 60, 61, 62, 63, 107, 65, 66
Offset: 0
Keywords
Examples
The first part of the diagram in the first quadrant: . . . . . . . . . . . . . . . . . . . . . . . . . _ _|_ _|_ _|_ _|_ _|_ _|_ _|_ _. . | | | | | | | |_|_. . | | | | | | | _ _|_. . | | | | | | |_|_ _|_. . | | | | | | _ _|_ _|_. . | | | | | |_|_ _|_ _|_. . _ _|_ _|_ _|_ _|_ _|_ _ _|_ _|_ _|_. . | | | | | |_|_ _|_ _|_ _|_. . | | | | | _ _|_ _|_ _|_ _|_. . | | | | |_|_ _|_ _|_ _|_ _|_. . | | | | _ _|_ _|_ _|_ _|_ _|_. . | | | |_|_ _|_ _|_ _|_ _|_ _| . 11 . _ _|_ _|_ _|_ _ _|_ _|_ _|_ _|_ _| . 17 . | | | |_|_ _|_ _|_ _|_ _| . 9 . | | | _ _|_ _|_ _|_ _| . 8 . | | |_|_ _|_ _|_ _| . 7 . | | _ _|_ _|_ _| . 6 . | |_|_ _|_ _| . 5 . _ _|_ _ _|_ _| . 7 . | |_|_ _| . 3 . | _ _| . 2 . |_| . 1 . . . . . . . . . . . . . . . . . . . . . . . . 0 . a(n) . For an explanation of this diagram as the skeleton of a piping model see A235800. - _Omar E. Pol_, Dec 30 2021
Links
Crossrefs
Programs
-
Python
from _future_ import division A235801_list = [n if n % 6 != 4 else 10*(n//6)+7 for n in range(10**4)] # Chai Wah Wu, Sep 26 2016
Formula
a(n) = 10*k - 3, if n is of the form (6*k-2), k>=1, otherwise a(n) = n.
From Chai Wah Wu, Sep 26 2016: (Start)
a(n) = 2*a(n-6) - a(n-12) for n > 11.
G.f.: x*(x^2 + 1)*(x^3 + 2*x^2 + 1)*(x^5 + x^4 + 2*x + 1)/(x^12 - 2*x^6 + 1). (End)
Comments