cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A235865 G-Carmichael numbers: Composite number such that A235863(n) divides A201629(n).

Original entry on oeis.org

4, 8, 12, 15, 16, 20, 24, 32, 36, 40, 48, 56, 60, 64, 72, 80, 96, 100, 105, 108, 112, 120, 128, 132, 143, 144, 156, 160, 168, 180, 192, 200, 216, 224, 240, 255, 256, 264, 272, 280, 288, 300, 312, 320, 324, 336, 360, 380, 384, 385, 392, 396, 399, 400, 432
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    FU[n_] := Which[Mod[n, 4] == 3, n + 1, Mod[n, 4] == 1, n - 1, True, n]; fa = FactorInteger; lam[1] = 1; lam[p_,s_] := Which[Mod[p, 4] == 3, p^(s - 1) (p + 1), Mod[p, 4] == 1, p^(s - 1) (p - 1), s ≥ 5, 2^(s -2), s > 1, 4, s == 1, 2]; lam[n_] := {aux = 1; Do[aux = LCM[aux, lam[fa[n][[i, 1]], fa[n][[i, 2]]]], {i, 1, Length[fa[n]]}]; aux}[[1]];Select[1+Range[1000], ! PrimeQ[#] && IntegerQ[FU[#]/lam[#]] &]
  • PARI
    ok(n)={my(f=factor(n), r=n-kronecker( -4, n)); for(i=1, #f~, my([p, e]=f[i, ]); my(t=if(p==2, 2^max(e-2, min(e, 2)), p^(e-1)*if(p%4==1, p-1, p+1))); if(r%t, return(0)) ); n>1 && !isprime(n)} \\ Andrew Howroyd, Aug 06 2018

Extensions

a(55) corrected by Andrew Howroyd, Aug 06 2018