A235865 G-Carmichael numbers: Composite number such that A235863(n) divides A201629(n).
4, 8, 12, 15, 16, 20, 24, 32, 36, 40, 48, 56, 60, 64, 72, 80, 96, 100, 105, 108, 112, 120, 128, 132, 143, 144, 156, 160, 168, 180, 192, 200, 216, 224, 240, 255, 256, 264, 272, 280, 288, 300, 312, 320, 324, 336, 360, 380, 384, 385, 392, 396, 399, 400, 432
Offset: 1
Keywords
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..1038
- Jose María Grau, A. M. Oller-Marcen, Manuel Rodriguez and D. Sadornil, Fermat test with Gaussian base and Gaussian pseudoprimes, arXiv:1401.4708 [math.NT], 2014.
Programs
-
Mathematica
FU[n_] := Which[Mod[n, 4] == 3, n + 1, Mod[n, 4] == 1, n - 1, True, n]; fa = FactorInteger; lam[1] = 1; lam[p_,s_] := Which[Mod[p, 4] == 3, p^(s - 1) (p + 1), Mod[p, 4] == 1, p^(s - 1) (p - 1), s ≥ 5, 2^(s -2), s > 1, 4, s == 1, 2]; lam[n_] := {aux = 1; Do[aux = LCM[aux, lam[fa[n][[i, 1]], fa[n][[i, 2]]]], {i, 1, Length[fa[n]]}]; aux}[[1]];Select[1+Range[1000], ! PrimeQ[#] && IntegerQ[FU[#]/lam[#]] &]
-
PARI
ok(n)={my(f=factor(n), r=n-kronecker( -4, n)); for(i=1, #f~, my([p, e]=f[i, ]); my(t=if(p==2, 2^max(e-2, min(e, 2)), p^(e-1)*if(p%4==1, p-1, p+1))); if(r%t, return(0)) ); n>1 && !isprime(n)} \\ Andrew Howroyd, Aug 06 2018
Extensions
a(55) corrected by Andrew Howroyd, Aug 06 2018