A235870 Expansion of ( f(-q)^12 + 22 * q * f(-q)^6 * f(-q^5)^6 + 125 * q^2 * f(-q^5)^12 ) / (f(-q) * f(-q^5))^2 in powers of q where f() is a Ramanujan theta function.
1, 12, 72, 264, 696, 1380, 2304, 3192, 5400, 6924, 12600, 12384, 18912, 20184, 28512, 39000, 43032, 45432, 63144, 63600, 101640, 88944, 110304, 112104, 151200, 174540, 183024, 188400, 231936, 225000, 351360, 274704, 346392, 344448, 407952, 479400, 509592
Offset: 0
Keywords
Examples
G.f. = 1 + 12*q + 72*q^2 + 264*q^3 + 696*q^4 + 1380*q^5 + 2304*q^6 + ...
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Michael Somos, Introduction to Ramanujan theta functions
- Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
Crossrefs
Cf. A028887.
Programs
-
Magma
A := Basis( ModularForms( Gamma0(5), 4), 36); A[1] + 12*A[2] + 72*A[3]; /* Michael Somos, Jun 13 2014 */
-
PARI
{a(n) = my(A, u1, u5); if( n<0, 0, A = x * O(x^n); u1 = eta(x + A); u5 = eta(x^5 + A); polcoeff( ( u1^12 + 22*x * (u1 * u5)^6 + 125*x^2 * u5^12 ) / (u1 * u5)^2, n))};
-
PARI
{a(n) = my(A, v1, v3); if( n<0, 0, A = x * O(x^n); v1 = eta(x + A) * eta(x^5 + A) ; v3 = eta(x^3 + A) * eta(x^15 + A) ; polcoeff( ( v1^4 + 9*x * (v1 * v3)^2 + 27*x^2 * v3^4 )^2 / (v1 * v3)^2, n))};
-
Sage
A = ModularForms( Gamma0(5), 4, prec=36) . basis(); A[1] + 12/13 * (3*A[0] + 10*A[2]); # Michael Somos, Jun 13 2014
Formula
Expansion of ( ( (f(-q) * f(-q^5))^4 + 9*q * (f(-q) * f(-q^3) * f(-q^5) * f(-q^15))^2 + 27*q * (f(-q^3) * f(-q^15))^4 ) / (f(-q) * f(-q^3) * f(-q^5) * f(-q^15)) )^2 in powers of q where f() is a Ramanujan theta function.
G.f. is a period 1 Fourier series which satisfies f(-1 / (5 t)) = 25 (t/i)^4 f(t) where q = exp(2 Pi i t).
Convolution square of A028887.
Comments