A235871 Primes p such that p+2, p+24 and p+246 are also primes.
5, 17, 107, 617, 857, 1277, 1487, 2087, 3167, 3557, 4217, 6947, 7457, 7877, 10067, 12917, 13217, 14387, 15137, 17657, 20897, 21317, 22367, 22697, 27407, 27527, 27917, 28547, 29207, 29387, 30467, 31727, 32117, 33287, 33617, 35507, 36107, 47657, 49367, 49787
Offset: 1
Keywords
Examples
a(2) = 17 is a prime: 17+2 = 19, 17+24 = 41 and 17+246 = 263 are also prime. a(3) = 107 is a prime: 107+2 = 119, 107+24 = 131 and 107+246 = 353 are also prime.
Links
- K. D. Bajpai, Table of n, a(n) for n = 1..5178
Programs
-
Maple
KD:= proc() local a,b,d,e; a:= ithprime(n); b:=a+2;d:=a+24;e:=a+246; if isprime(b) and isprime(d) and isprime(e) then return (a) :fi; end: seq(KD(), n=1..15000);
-
Mathematica
KD = {}; Do[p = Prime[n]; If[PrimeQ[p + 2] && PrimeQ[p + 24] && PrimeQ[p + 246], AppendTo[KD, p]], {n, 15000}]; KD c = 0; p = Prime[n]; Do[If[PrimeQ[p + 2] && PrimeQ[p + 24] && PrimeQ[p + 246], c = c + 1; Print[c, " ", Prime[n]]], {n, 1, 5000000}]; (* b - file *)
-
PARI
s=[]; forprime(p=2, 50000, if(isprime(p+2) && isprime(p+24) && isprime(p+246), s=concat(s, p))); s \\ Colin Barker, Apr 21 2014
Comments