A235913 a(n) is the Manhattan distance between n^3 and (n+1)^3 in a square spiral of positive integers with 1 at the center.
1, 3, 11, 15, 13, 9, 5, 21, 33, 59, 71, 49, 47, 35, 15, 13, 43, 73, 109, 123, 117, 109, 167, 141, 113, 77, 43, 5, 51, 95, 145, 201, 263, 281, 397, 413, 317, 333, 269, 239, 183, 121, 63, 11, 81, 147, 219, 307, 379, 471, 567, 623, 517, 569, 683, 503, 545, 473, 395, 311
Offset: 1
Keywords
Examples
Manhattan distance between 2^3=8 and 3^3=27 is 3 in a square spiral, so a(2)=3.
Programs
-
Python
import math def get_x_y(n): sr = int(math.sqrt(n-1)) # Ok for small n's sr = sr-1+(sr&1) rm = n-sr*sr d = (sr+1)//2 if rm<=sr+1: return -d+rm, d if rm<=sr*2+2: return d, d-(rm-(sr+1)) if rm<=sr*3+3: return d-(rm-(sr*2+2)), -d return -d, -d+rm-(sr*3+3) for n in range(1, 77): x0, y0 = get_x_y(n**3) x1, y1 = get_x_y((n+1)**3) print(abs(x1-x0)+abs(y1-y0), end=', ')
Comments