cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A235984 Primes p with f(p), f(f(p)), f(f(f(p))), f(f(f(f(p)))), f(f(f(f(f(p))))) all prime, where f(n) = prime(n) - n + 1.

Original entry on oeis.org

2, 3, 501187, 560029, 2076881, 2836003, 2907011, 8254787, 8822347, 10322189, 11329181, 11354641, 12307693, 14528069, 15801601, 17757427, 19023091, 24995669, 25871971
Offset: 1

Views

Author

Zhi-Wei Sun, Jan 17 2014

Keywords

Comments

By the general conjecture in A235925, this sequence should have infinitely many terms.

Examples

			a(3) = 501187 with 501187, f(501187) = 6886357, f(6886357) = 113948711, f(113948711) = 2224096873, f(2224096873) =  50351471977 and f(50351471977) = 1303792228393 all prime.
		

Crossrefs

Programs

  • Mathematica
    f[n_]:=Prime[n]-n+1
    p[k_]:=PrimeQ[f[Prime[k]]]&&PrimeQ[f[f[Prime[k]]]]&&PrimeQ[f[f[f[Prime[k]]]]]&&PrimeQ[f[f[f[f[Prime[k]]]]]]&&PrimeQ[f[f[f[f[f[Prime[k]]]]]]]
    n=0;Do[If[p[k],n=n+1;Print[n," ",Prime[k]]],{k,1,10^7}]

A236066 Primes p with g(p), g(g(p)), g(g(g(p))), g(g(g(g(p)))), g(g(g(g(g(p))))) all prime, where g(n) = prime(n) - n - 1.

Original entry on oeis.org

5, 98893, 1110709, 4231849, 5319707, 6763349, 7904087, 10823431, 13893109, 15323939, 15544079, 15716713, 17642899, 18978439, 20126237
Offset: 1

Views

Author

Zhi-Wei Sun, Jan 18 2014

Keywords

Comments

Conjecture: For any integer m > 1, there are infinitely many chains p(1) < ... < p(m) of m primes with p(k+1) = prime(p(k)) - p(k) - 1 for all 0 < k < m.
This is similar to the conjecture in A235925.

Examples

			a(1) = 5 since neither g(2) = prime(2) - 2 - 1 = 0 nor g(3) = prime(3) - 3 - 1 = 1 is prime, but 5 = g(5) = g(g(5)) =  g(g(g(5))) = g(g(g(g(5)))) = g(g(g(g(g(5))))) is prime.
a(2) = 98893 with 98893, g(98893) = 1185113, g(1185113) = 17381209, g(17381209) = 304696943, g(304696943) = 6262760333, g(6262760333) = 148561011217 all prime.
		

Crossrefs

Programs

  • Mathematica
    g[n_]:=Prime[n]-n-1
    p[k_]:=PrimeQ[g[Prime[k]]]&&PrimeQ[g[g[Prime[k]]]]&&PrimeQ[g[g[g[Prime[k]]]]]&&PrimeQ[g[g[g[g[Prime[k]]]]]]&&PrimeQ[g[g[g[g[g[Prime[k]]]]]]]
    n=0;Do[If[p[k],n=n+1;Print[n," ",Prime[k]]],{k,1,10^6}]
Showing 1-2 of 2 results.