cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A235945 Number of partitions of n containing at least one prime.

Original entry on oeis.org

0, 0, 1, 2, 3, 5, 8, 12, 17, 24, 34, 48, 65, 88, 118, 157, 205, 269, 348, 450, 575, 734, 929, 1176, 1473, 1845, 2297, 2856, 3527, 4355, 5346, 6558, 8004, 9759, 11848, 14374, 17363, 20958, 25210, 30292, 36278, 43412, 51792, 61733, 73383, 87146, 103239, 122194
Offset: 0

Views

Author

J. Stauduhar, Jan 17 2014

Keywords

Examples

			a(5) = 5 because 5 partitions of 5 contain at least one prime: [5], [3,2], [3,1,1], [2,2,1], [2,1,1,1].
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
           b(n, i-1)+`if`(i>n or isprime(i), 0, b(n-i, i))))
        end:
    a:= n-> combinat[numbpart](n) -b(n, n):
    seq(a(n), n=0..50);  # Alois P. Heinz, Jan 18 2014
  • Mathematica
    b[n_, i_] := b[n, i] = If[n == 0, 1, If[i<1, 0, b[n, i-1] + If[i>n || PrimeQ[i], 0, b[n-i, i]]]]; a[n_] := PartitionsP[n]-b[n, n]; Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Jan 28 2014, after Alois P. Heinz *)

Formula

a(n) = A000041(n) - A002095(n).
Product_{k>0} 1/(1-x^k) - Product_{k>0} (1-x^prime(k))/(1-x^k). - Alois P. Heinz, Jan 18 2014