A235991 Numbers with an odd arithmetic derivative, cf. A003415.
2, 3, 5, 6, 7, 10, 11, 13, 14, 17, 18, 19, 22, 23, 26, 27, 29, 30, 31, 34, 37, 38, 41, 42, 43, 45, 46, 47, 50, 53, 54, 58, 59, 61, 62, 63, 66, 67, 70, 71, 73, 74, 75, 78, 79, 82, 83, 86, 89, 90, 94, 97, 98, 99, 101, 102, 103, 105, 106, 107, 109, 110, 113
Offset: 1
Keywords
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
Programs
-
Haskell
a235991 n = a235991_list !! (n-1) a235991_list = filter (odd . a003415) [0..]
-
Mathematica
ader[n_] := ader[n] = Switch[n, 0|1, 0, _, If[PrimeQ[n], 1, Sum[Module[{p, e}, {p, e} = pe; n e/p], {pe, FactorInteger[n]}]]]; Select[Range[120], OddQ[ader[#]]&] (* Jean-François Alcover, Oct 10 2021 *)
-
Python
from itertools import count, islice from sympy import factorint def A235991_gen(startvalue=0): # generator of terms >= startvalue return filter(lambda n: n&3==2 or (n&1 and sum(factorint(n).values())&1), count(max(startvalue,0))) A235991_list = list(islice(A235991_gen(),40)) # Chai Wah Wu, Nov 04 2022
Formula
n is in this sequence iff either n is congruent to 2 modulo 4 or n and Omega(n) are both odd. - Charlie Neder, Feb 25 2019
Comments