A236001 Sum of positive ranks of all overpartitions of n.
0, 2, 4, 10, 20, 36, 64, 110, 180, 288, 452, 696, 1052, 1568, 2304, 3346, 4808, 6838, 9636, 13464, 18664, 25684, 35104, 47672, 64348, 86368, 115304, 153152, 202452, 266404, 349032, 455406, 591856, 766284, 988544, 1270862, 1628380, 2079828, 2648296, 3362180
Offset: 1
Keywords
Examples
For n = 4 we have: --------------------------- Overpartitions of 4 Rank --------------------------- 4 4 - 1 = 3 4 4 - 1 = 3 2+2 2 - 2 = 0 2+2 2 - 2 = 0 3+1 3 - 2 = 1 3+1 3 - 2 = 1 3+1 3 - 2 = 1 3+1 3 - 2 = 1 2+1+1 2 - 3 = -1 2+1+1 2 - 3 = -1 2+1+1 2 - 3 = -1 2+1+1 2 - 3 = -1 1+1+1+1 1 - 4 = -3 1+1+1+1 1 - 4 = -3 --------------------------- The sum of positive ranks of all overpartitions of 4 is 3+3+1+1+1+1 = 10 so a(4) = 10.
Programs
-
PARI
a(n)={my(s=0); forpart(p=n, my(r=p[#p]-#p); if(r>0, s+=r*2^#Set(p))); s} \\ Andrew Howroyd, Feb 19 2020
Extensions
Terms a(7) and beyond from Andrew Howroyd, Feb 19 2020
Comments