A236044 Primes p such that p^4 + p + 1 is prime.
2, 5, 11, 47, 89, 107, 131, 191, 197, 239, 347, 641, 701, 839, 941, 977, 1049, 1061, 1289, 1709, 1847, 1871, 1949, 1979, 2129, 2789, 2897, 3371, 3557, 3719, 3761, 3917, 4001, 4091, 4211, 4289, 4337, 4397, 4547, 4751
Offset: 1
Keywords
Examples
941 is prime and 941^4 + 941 + 1 is prime, thus 941 is a member of this sequence.
Links
- Harvey P. Dale, Table of n, a(n) for n = 1..1000
Crossrefs
Cf. A049408.
Programs
-
Mathematica
Select[Prime[Range[700]],PrimeQ[#^4+#+1]&] (* Harvey P. Dale, Sep 27 2014 *)
-
Python
import sympy from sympy import isprime {print(p) for p in range(10**5) if isprime(p) and isprime(p**4+p+1)}