A236073 Primes p such that p^4 + p + 1 and p^4 - p - 1 are also prime.
2, 5, 11, 239, 1871, 4001, 4397, 6971, 12647, 12689, 13337, 13619, 15401, 19391, 19559, 19739, 20201, 20297, 22871, 22937, 28307, 30029, 32561, 36299, 36929, 39569, 44279, 45497, 47441, 48767, 50069, 53897, 55871
Offset: 1
Keywords
Examples
6971 is prime, 6971^4 - 6971 - 1 is prime, and 6971^4 + 6971 + 1 is prime. So 6971 is a member of this sequence.
Programs
-
PARI
s=[]; forprime(p=2, 55871, if(isprime(p^4+p+1)&&isprime(p^4-p-1), s=concat(s, p))); s \\ Colin Barker, Jan 19 2014
-
Python
import sympy from sympy import isprime {print(p) for p in range(10**5) if isprime(p**4+p+1) and isprime(p**4-p-1) and isprime(p)}
Comments