cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A236097 a(n) = |{0 < k < n-2: p = phi(k) + phi(n-k)/2 + 1, prime(p) - p - 1 and prime(p) - p + 1 are all prime}|, where phi(.) is Euler's totient function.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 2, 2, 1, 3, 1, 1, 2, 2, 3, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 2, 0, 5, 5, 2, 4, 1, 5, 3, 3, 2, 4, 4, 9, 5, 9, 4, 10, 3, 6, 6, 8, 5, 10, 4, 4, 7, 8, 10, 5, 8, 9, 9, 4, 11, 3, 5, 5, 9, 5, 4, 4, 5, 6, 8, 7, 6, 3, 11, 4, 8, 10, 9, 8, 7, 6, 11, 7, 9, 4, 6, 5, 6, 2, 9, 4, 7, 6, 7, 10, 9
Offset: 1

Views

Author

Zhi-Wei Sun, Jan 19 2014

Keywords

Comments

Conjecture: a(n) > 0 for all n > 31.
This implies that there are infinitely many primes p with {prime(p) - p - 1, prime(p) - p + 1} a twin prime pair.

Examples

			a(20) = 1 since phi(2) + phi(18)/2 + 1 = 5, prime(5) - 5 - 1 = 5 and prime(5) - 5 + 1 = 7 are all prime.
a(36) = 1 since phi(21) + phi(15)/2 + 1 = 17, prime(17) - 17 - 1 = 41 and prime(17) - 17 + 1 = 43 are all prime.
		

Crossrefs

Programs

  • Mathematica
    p[n_]:=PrimeQ[n]&&PrimeQ[Prime[n]-n-1]&&PrimeQ[Prime[n]-n+1]
    f[n_,k_]:=EulerPhi[k]+EulerPhi[n-k]/2+1
    a[n_]:=Sum[If[p[f[n,k]],1,0],{k,1,n-3}]
    Table[a[n],{n,1,100}]

A236075 Odd primes p with prime(2*p) - 2*prime(p) and prime(p) - 2*prime((p-1)/2) both prime.

Original entry on oeis.org

5, 29, 79, 101, 103, 109, 353, 487, 821, 1367, 1811, 2111, 2593, 2617, 2939, 2969, 3001, 3659, 3727, 3877, 3911, 5347, 5779, 6481, 6959, 7121, 9059, 9649, 10007, 10099, 11299, 11311, 11827, 12343, 12511, 12539, 12589, 12689, 12923, 13781, 13967, 14249, 15859, 15923, 16363, 16889, 17321, 17683, 17881, 18181
Offset: 1

Views

Author

Zhi-Wei Sun, Jan 19 2014

Keywords

Comments

By the conjecture in A236074, this sequence should have infinitely many terms.

Examples

			a(1) = 5 since neither prime(2*2) - 2*prime(2) = 1 nor  prime(3) - 2*prime((3-1)/2) = 1 is prime, but prime(2*5) - 2*prime(5) = 29 - 2*11 = 7 and prime(5) - 2*prime((5-1)/2) = 11 - 2*3 = 5 are both prime.
		

Crossrefs

Programs

  • Mathematica
    PQ[n_]:=n>0&&PrimeQ[n]
    p[n_]:=PQ[Prime[2n]-2Prime[n]]&&PQ[Prime[n]-2*Prime[(n-1)/2]]
    n=0;Do[If[p[Prime[k]],n=n+1;Print[n," ",Prime[k]]],{k,2,10^6}]
  • PARI
    s=[]; forprime(p=3, 20000, if(isprime(prime(2*p)-2*prime(p)) && isprime(prime(p)-2*prime((p-1)/2)), s=concat(s, p))); s \\ Colin Barker, Jan 19 2014

A236138 a(n) = |{0 < k < n: p = phi(k) + phi(n-k)/3 - 1, prime(p-1) - (p-1) and prime(p-1) - 2*prime((p-1)/2) are all prime}|, where phi(.) is Euler's totient function.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 2, 0, 3, 0, 1, 3, 1, 4, 0, 5, 2, 2, 3, 4, 1, 4, 2, 5, 3, 1, 6, 4, 3, 0, 4, 5, 3, 3, 4, 5, 2, 4, 2, 2, 4, 3, 4, 1, 2, 2, 3, 5, 3, 0, 3, 2, 4, 1, 2, 2, 4, 0, 4, 1, 3, 3, 2, 0, 4, 1, 3, 2, 3, 1, 5, 3, 5, 1, 4, 2, 3, 5, 4, 4, 5, 4, 1, 2, 2, 3, 3, 7, 3, 2, 3
Offset: 1

Views

Author

Zhi-Wei Sun, Jan 19 2014

Keywords

Comments

Conjecture: (i) a(n) > 0 for all n > 73.
(ii) For any integer n > 472, there is a positive integer k < n such that p = phi(k) + phi(n-k)/4 - 1, prime(p) - 2*prime((p-1)/2) and prime(p) - 2*prime((p+1)/2) are all prime.
Clearly, part (i) of the conjecture implies that there are infinitely many odd primes p with prime(p-1) - (p-1) and prime(p-1) - 2*prime((p-1)/2) both prime, and part (ii) implies that there are infinitely many odd primes p with prime(p) - 2*prime((p-1)/2) and prime(p) - 2*prime((p+1)/2) both prime.

Examples

			a(20) = 1 since phi(11) + phi(9)/3 - 1 = 11, prime(10) - 10 = 29 - 10 = 19 and prime(10) - 2*prime(5) = 29 - 2*11 = 7 are all prime.
a(293) = 1 since phi(267) + phi(26)/3 - 1 = 176 + 12/3 - 1 = 179, prime(178) - 178 = 1061 - 178 = 883 and prime(178) - 2*prime(89) = 1061 - 2*461 = 139 are all prime.
		

Crossrefs

Programs

  • Mathematica
    PQ[n_]:=n>0&&PrimeQ[n]
    p[n_]:=n>2&&PrimeQ[n]&&PrimeQ[Prime[n-1]-(n-1)]&&PQ[Prime[n-1]-2*Prime[(n-1)/2]]
    f[n_,k_]:=EulerPhi[k]+EulerPhi[n-k]/3-1
      a[n_]:=Sum[If[p[f[n,k]],1,0],{k,1,n-1}]
    Table[a[n],{n,1,100}]
Showing 1-3 of 3 results.