cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A236074 a(n) = |{0 < k < n: p = phi(k) + phi(n-k)/6 + 1, prime(2*p) - 2*prime(p) and prime(p) - 2*prime((p-1)/2) are all prime}|, where phi(.) is Euler's totient function.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 2, 1, 1, 2, 0, 1, 0, 0, 0, 0, 2, 2, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 1, 0, 4, 0, 0, 1, 2, 0, 1, 2, 1, 0, 3, 4, 0, 0, 0, 2, 1, 3, 1, 2, 0
Offset: 1

Views

Author

Zhi-Wei Sun, Jan 19 2014

Keywords

Comments

Conjecture: (i) a(n) > 0 for all n > 116.
(ii) For any integer n > 196, there is a positive integer k < n such that p = phi(k) + phi(n-k)/6 + 1, prime(2*p) - 2*prime(p) and prime(p-1) - 2*prime((p-1)/2) are all prime.
Clearly, part (i) (or part (ii)) implies that there are infinitely many odd primes p with prime(2*p) - 2*prime(p) and prime(p) - 2*prime((p-1)/2) (or prime(p-1) - 2*prime((p-1)/2), resp.) both prime.

Examples

			a(30) = 1 since phi(4) + phi(26)/6 + 1 = 5, prime(2*5) - 2*prime(5) = 29 - 2*11 = 7 and prime(5) - 2*prime((5-1)/2) = 11 - 2*3 = 5 are all prime.
a(204) = 1 since phi(159) + phi(45)/6 + 1 = 109, prime(2*109) - 2*prime(109) = 1361 - 2*599 = 163, and prime(109) - 2*prime((109-1)/2) = 599 - 2*251 = 97 are all prime.
		

Crossrefs

Programs

  • Mathematica
    PQ[n_]:=PQ[n]=n>0&&PrimeQ[n]
    p[n_]:=PQ[n]&&PQ[Prime[2n]-2Prime[n]]&&PQ[Prime[n]-2*Prime[(n-1)/2]]
    f[n_,k_]:=EulerPhi[k]+EulerPhi[n-k]/6+1
    a[n_]:=Sum[If[p[f[n,k]],1,0],{k,1,n-1}]
    Table[a[n],{n,1,100}]

A236143 Odd primes p with prime(p-1) - (p-1) and prime(p-1) - 2*prime((p-1)/2) both prime.

Original entry on oeis.org

7, 11, 31, 67, 179, 193, 197, 281, 347, 349, 563, 599, 757, 1123, 1453, 1543, 1933, 1987, 2083, 2531, 2971, 3037, 3259, 3547, 3583, 3701, 3919, 4027, 4483, 5023, 5581, 5591, 5647, 5981, 6449, 7207, 7297, 7603, 8291, 9049
Offset: 1

Views

Author

Zhi-Wei Sun, Jan 19 2014

Keywords

Comments

By part (i) of the conjecture in A236138, this sequence should have infinitely many terms.

Examples

			a(1) = 7 with prime(6) - 6 = 13 - 6 = 7 and prime(6) - 2*prime(3) = 13 - 2*5 = 3 both prime.
		

Crossrefs

Programs

  • Mathematica
    PQ[n_]:=n>0&&PrimeQ[n]
    p[n_]:=PrimeQ[Prime[n-1]-(n-1)]&&PQ[Prime[n-1]-2*Prime[(n-1)/2]]
    n=0;Do[If[p[Prime[k]],n=n+1;Print[n," ",Prime[k]]],{k,2,10^5}]
  • PARI
    s=[]; forprime(p=3, 10000, if(isprime(prime(p-1)-(p-1)) && isprime(prime(p-1)-2*prime((p-1)/2)), s=concat(s, p))); s \\ Colin Barker, Jan 19 2014
Showing 1-2 of 2 results.