A236074 a(n) = |{0 < k < n: p = phi(k) + phi(n-k)/6 + 1, prime(2*p) - 2*prime(p) and prime(p) - 2*prime((p-1)/2) are all prime}|, where phi(.) is Euler's totient function.
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 2, 1, 1, 2, 0, 1, 0, 0, 0, 0, 2, 2, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 1, 0, 4, 0, 0, 1, 2, 0, 1, 2, 1, 0, 3, 4, 0, 0, 0, 2, 1, 3, 1, 2, 0
Offset: 1
Keywords
Examples
a(30) = 1 since phi(4) + phi(26)/6 + 1 = 5, prime(2*5) - 2*prime(5) = 29 - 2*11 = 7 and prime(5) - 2*prime((5-1)/2) = 11 - 2*3 = 5 are all prime. a(204) = 1 since phi(159) + phi(45)/6 + 1 = 109, prime(2*109) - 2*prime(109) = 1361 - 2*599 = 163, and prime(109) - 2*prime((109-1)/2) = 599 - 2*251 = 97 are all prime.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
PQ[n_]:=PQ[n]=n>0&&PrimeQ[n] p[n_]:=PQ[n]&&PQ[Prime[2n]-2Prime[n]]&&PQ[Prime[n]-2*Prime[(n-1)/2]] f[n_,k_]:=EulerPhi[k]+EulerPhi[n-k]/6+1 a[n_]:=Sum[If[p[f[n,k]],1,0],{k,1,n-1}] Table[a[n],{n,1,100}]
Comments