cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A236075 Odd primes p with prime(2*p) - 2*prime(p) and prime(p) - 2*prime((p-1)/2) both prime.

Original entry on oeis.org

5, 29, 79, 101, 103, 109, 353, 487, 821, 1367, 1811, 2111, 2593, 2617, 2939, 2969, 3001, 3659, 3727, 3877, 3911, 5347, 5779, 6481, 6959, 7121, 9059, 9649, 10007, 10099, 11299, 11311, 11827, 12343, 12511, 12539, 12589, 12689, 12923, 13781, 13967, 14249, 15859, 15923, 16363, 16889, 17321, 17683, 17881, 18181
Offset: 1

Views

Author

Zhi-Wei Sun, Jan 19 2014

Keywords

Comments

By the conjecture in A236074, this sequence should have infinitely many terms.

Examples

			a(1) = 5 since neither prime(2*2) - 2*prime(2) = 1 nor  prime(3) - 2*prime((3-1)/2) = 1 is prime, but prime(2*5) - 2*prime(5) = 29 - 2*11 = 7 and prime(5) - 2*prime((5-1)/2) = 11 - 2*3 = 5 are both prime.
		

Crossrefs

Programs

  • Mathematica
    PQ[n_]:=n>0&&PrimeQ[n]
    p[n_]:=PQ[Prime[2n]-2Prime[n]]&&PQ[Prime[n]-2*Prime[(n-1)/2]]
    n=0;Do[If[p[Prime[k]],n=n+1;Print[n," ",Prime[k]]],{k,2,10^6}]
  • PARI
    s=[]; forprime(p=3, 20000, if(isprime(prime(2*p)-2*prime(p)) && isprime(prime(p)-2*prime((p-1)/2)), s=concat(s, p))); s \\ Colin Barker, Jan 19 2014