A236077 Cubes which remain (integer) cubes when divided by their digital sum.
1, 8, 512, 1000, 8000, 19683, 35937, 46656, 59319, 74088, 125000, 157464, 185193, 328509, 373248, 421875, 474552, 512000, 592704, 658503, 804357, 1000000, 1157625, 1259712, 1331000, 1367631, 1481544, 2460375, 2628072
Offset: 1
Examples
19683 is in the sequence because 19683 divided by its digital sum (1+9+6+8+3 = 27) gives 729 which is also a cube: 729 = 9^3. 46656 is in the sequence because 46656 divided by its digital sum (4+6+6+5+6 = 27) gives 1728 which is also a cube: 1728 = 12^3.
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 1..10000 (first 100 terms from Bajpai)
Programs
-
Maple
with(StringTools):KD := proc() local a,b,d,e; a:=n^3; b:=add( i,i = convert((a), base, 10))(a); d:=a/b; e:=evalf(d^(1/3)); if e=floor(e) then RETURN (a); fi; end: seq(KD(), n=1..200);
-
PARI
digsum(n) = d=eval(Vec(Str(n))); sum(i=1, #d, d[i]) s=[]; for(n=1, 200, d=digsum(n^3); if(n^3%d==0 && ispower(n^3\d, 3), s=concat(s, n^3))); s \\ Colin Barker, Jan 22 2014