A236212 Floor of the value of Riemann's xi function at n.
0, 0, 0, 0, 0, 0, 1, 1, 2, 3, 5, 8, 13, 21, 36, 63, 113, 206, 386, 736, 1433, 2849, 5773, 11919, 25059, 53613, 116658, 258032, 579856, 1323273, 3065246, 7204159, 17172291, 41498712, 101635485, 252180415, 633710357, 1612310803, 4151993262, 10819115820
Offset: 1
Keywords
Examples
xi(1) = 1/2, so a(1) = [0.5] = 0. xi(8) = (4*Pi^4)/225 = 1.7317…, so a(8) = [1.7] = 1.
Links
- J. Sondow and C. Dumitrescu, A monotonicity property of Riemann's xi function and a reformulation of the Riemann Hypothesis, Period. Math. Hungar. 60 (2010), 37-40.
- E. Weisstein's MathWorld, Xi Function
- Wikipedia, Riemann Xi function
- Index entries for zeta function
Crossrefs
Cf. A002410.
Programs
-
Mathematica
xi[ s_] := If[ s == 1, 1/2, (s/2)*(s - 1)*Pi^(-s/2)*Gamma[ s/2]*Zeta[ s]]; Table[ Floor[ xi[ n]], {n, 40}]
Formula
a(n) = [xi(n)] for n > 0.
Comments