cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A236213 Number of units in the imaginary quadratic field Q(sqrt(-d)), where d > 0 is the n-th squarefree number.

Original entry on oeis.org

4, 2, 6, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2
Offset: 1

Views

Author

Jonathan Sondow, Jan 29 2014

Keywords

Comments

a(n) = 2 for all n > 3.
Decimal expansion of 959/225. - Elmo R. Oliveira, May 05 2024

Examples

			Q(sqrt(-1)) = Q(i) has units +/-1, +/-i, so a(1) = 4.
Q(sqrt(-3)) has units +/-1, +/-ω, +/-ω^2, where ω = (1 + sqrt(-3))/2, so a(3) = 6.
Q(sqrt(-d)) has units +/-1 for all other squarefree d > 0, so a(n) = 2 for n = 2 and n > 3.
		

References

  • Saban Alaca & Kenneth S. Williams, Introductory Algebraic Number Theory. Cambridge: Cambridge University Press (2004): p. 98, Theorem 5.4.3.
  • Ivan Niven & Herbert S. Zuckerman, An Introduction to the Theory of Numbers, 4th Ed. New York: John Wiley & Sons (1980): p. 249, Theorem 9.22.

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[2 x (2 - x + 2 x^2 - 2 x^3)/(1 - x), {x, 0, 105}], x] (* Michael De Vlieger, Mar 30 2016 *)

Formula

a(n) = A092205(A005117(n)).
G.f.: 2*x*(2 - x + 2*x^2 - 2*x^3)/(1 - x). [Bruno Berselli, Jan 30 2014]