A236220 Cubes which when divided by their digital sum, become square.
1, 8, 512, 4913, 5832, 17576, 19683, 64000, 125000, 314432, 421875, 1000000, 1124864, 1259712, 1404928, 3176523, 8000000, 91125000, 130323843, 191102976, 274625000, 348913664, 512000000, 791453125
Offset: 1
Examples
19683 is in the sequence because 19683 divided by its digital sum (1+9+6+8+3 = 27) gives 729 which is a square: 729 = 27^2. 314432 is in the sequence because 314432 divided by its digital sum (3+1+4+4+3+2 = 17) gives 18496 which is a square: 18496 = 136^2.
Links
- K. D. Bajpai and Giovanni Resta, Table of n, a(n) for n = 1..1000 (first 110 terms from K. D. Bajpai)
Programs
-
Maple
with(StringTools):KD := proc() local a,b,d,e; a:=n^3; b:=add( i,i = convert((a), base,10))(a); d:=a/b; if d=floor(d) then e:=evalf(d^(1/2)); if e=floor(e)then RETURN (a);fi;fi; end: seq(KD(), n=1..3000);
-
Mathematica
Select[Range[10^4]^3, IntegerQ@ Sqrt[#/Total[ IntegerDigits@#]] &] (* Giovanni Resta, Jan 20 2014 *)
-
PARI
i2d(x) = if(x==0, return([0])); v=[]; while(x>0, y=x%10; x\=10; v=concat(y, v)); v digsum(n) = d=i2d(n); sum(i=1, #d, d[i]) s=[]; for(n=1, 1000, c=n^3; if(issquare(c/digsum(c)), s=concat(s, c))); s \\ Colin Barker, Jan 20 2014
Comments