A236265 a(n) = |{0 < k < n: m = phi(k)/2 + phi(n-k)/8 is an integer with m! - prime(m) prime}|, where phi(.) is Euler's totient function.
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 1, 2, 2, 1, 2, 2, 4, 3, 5, 1, 3, 2, 3, 3, 4, 5, 9, 5, 5, 6, 7, 8, 8, 8, 5, 7, 5, 8, 8, 5, 5, 9, 8, 6, 6, 9, 8, 10, 6, 9, 4, 6, 9, 9, 8, 10, 9, 6, 10, 7, 8, 12, 11, 10, 8, 11, 9, 12, 7, 13, 12, 13
Offset: 1
Keywords
Examples
a(23) = 1 since phi(7)/2 + phi(16)/8 = 3 + 1 = 4 with 4! - prime(4) = 24 - 7 = 17 prime. a(26) = 1 since phi(9)/2 + phi(17)/8 = 3 + 2 = 5 with 5! - prime(5) = 120 - 11 = 109 prime.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..7000
Programs
-
Mathematica
q[n_]:=IntegerQ[n]&&PrimeQ[n!-Prime[n]] f[n_,k_]:=EulerPhi[k]/2+EulerPhi[n-k]/8 a[n_]:=Sum[If[q[f[n,k]],1,0],{k,1,n-1}] Table[a[n],{n,1,100}]
Comments