A236263 a(n) = |{0 < k < n: m = phi(k)/2 + phi(n-k)/8 is an integer with m! + prime(m) prime}|, where phi(.) is Euler's totient function.
0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 2, 1, 0, 0, 1, 2, 3, 3, 4, 5, 4, 4, 5, 7, 4, 5, 6, 6, 5, 5, 5, 7, 6, 7, 9, 7, 8, 7, 7, 5, 11, 8, 8, 8, 11, 8, 7, 5, 10, 6, 9, 8, 10, 7, 8, 10, 9, 7, 8, 9, 13, 8, 8, 9, 10, 6, 11, 10, 7, 7, 9, 11, 13, 8, 11, 13, 11, 14, 6
Offset: 1
Keywords
Examples
a(18) = 1 since phi(3)/2 + phi(15)/8 = 1 + 1 = 2 with 2! + prime(2) = 2 + 3 = 5 prime. a(356) = 1 since phi(203)/2 + phi(153)/8 = 84 + 12 = 96 with 96! + prime(96) = 96! + 503 prime. a(457) = 1 since phi(7)/2 + phi(450)/8 = 3 + 15 = 18 with 18! + prime(18) = 18! + 61 = 6402373705728061 prime.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..8100
Programs
-
Mathematica
q[n_]:=IntegerQ[n]&&PrimeQ[n!+Prime[n]] f[n_,k_]:=EulerPhi[k]/2+EulerPhi[n-k]/8 a[n_]:=Sum[If[q[f[n,k]],1,0],{k,1,n-1}] Table[a[n],{n,1,100}]
Comments