cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A236263 a(n) = |{0 < k < n: m = phi(k)/2 + phi(n-k)/8 is an integer with m! + prime(m) prime}|, where phi(.) is Euler's totient function.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 2, 1, 0, 0, 1, 2, 3, 3, 4, 5, 4, 4, 5, 7, 4, 5, 6, 6, 5, 5, 5, 7, 6, 7, 9, 7, 8, 7, 7, 5, 11, 8, 8, 8, 11, 8, 7, 5, 10, 6, 9, 8, 10, 7, 8, 10, 9, 7, 8, 9, 13, 8, 8, 9, 10, 6, 11, 10, 7, 7, 9, 11, 13, 8, 11, 13, 11, 14, 6
Offset: 1

Views

Author

Zhi-Wei Sun, Jan 21 2014

Keywords

Comments

It seems that a(n) > 0 for all n > 17. (We have verified this for n up to 13000.) If a(n) > 0 infinitely often, then there are infinitely many positive integers m with m! + prime(m) prime.
See also A236265 for a similar sequence.

Examples

			a(18) = 1 since phi(3)/2 + phi(15)/8 = 1 + 1 = 2 with 2! + prime(2) = 2 + 3 = 5 prime.
a(356) = 1 since phi(203)/2 + phi(153)/8 = 84 + 12 = 96 with 96! + prime(96) = 96! + 503 prime.
a(457) = 1 since phi(7)/2 + phi(450)/8 = 3 + 15 = 18 with 18! + prime(18) = 18! + 61 = 6402373705728061 prime.
		

Crossrefs

Programs

  • Mathematica
    q[n_]:=IntegerQ[n]&&PrimeQ[n!+Prime[n]]
    f[n_,k_]:=EulerPhi[k]/2+EulerPhi[n-k]/8
    a[n_]:=Sum[If[q[f[n,k]],1,0],{k,1,n-1}]
    Table[a[n],{n,1,100}]

A236325 a(n) = |{0 < k < n: m = phi(k)/2 + phi(n-k)/12 is an integer with m! + prime(m) prime}|, where phi(.) is Euler's totient function.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 2, 1, 1, 2, 3, 2, 1, 1, 2, 2, 1, 2, 3, 4, 3, 4, 4, 5, 2, 4, 3, 4, 5, 5, 6, 5, 6, 8, 7, 9, 8, 6, 6, 5, 8, 9, 4, 8, 7, 7, 5, 5, 7, 7, 8, 8, 6, 7, 8, 7, 10, 5, 8, 9, 8, 7, 7, 6, 7, 8, 12, 10, 6, 8, 9, 9, 12, 9, 8, 7, 13
Offset: 1

Views

Author

Zhi-Wei Sun, Jan 22 2014

Keywords

Comments

It might seem that a(n) > 0 for all n > 14, but a(7365) = 0. If a(n) > 0 infinitely often, then there are infinitely many positive integers m with m! + prime(m) prime.

Examples

			a(10) = 1 since phi(1)/2 + phi(9)/12 = 1/2 + 6/12 = 1 with 1! + prime(1) = 1 + 2 = 3 prime.
a(23) = 1 since phi(10)/2 + phi(13)/12 = 2 + 1 = 3 with 3! + prime(3) = 6 + 5 = 11 prime.
		

Crossrefs

Programs

  • Mathematica
    p[n_]:=IntegerQ[n]&&PrimeQ[n!+Prime[n]]
    f[n_,k_]:=EulerPhi[k]/2+EulerPhi[n-k]/12
    a[n_]:=Sum[If[p[f[n,k]],1,0],{k,1,n-1}]
    Table[a[n],{n,1,100}]
Showing 1-2 of 2 results.