cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A236264 Even indices of Fibonacci numbers which are the sum of two squares.

Original entry on oeis.org

0, 2, 6, 12, 14, 26, 38, 62, 74, 86, 98, 122, 134, 146, 158, 182, 222, 254, 326, 338, 366, 398, 446, 614, 626, 698, 722, 794, 866, 1022, 1046, 1082, 1226, 1238, 1418, 1646, 1814, 2174, 2246, 2258, 2294, 2426, 2558
Offset: 1

Views

Author

Jean-François Alcover, Jan 21 2014

Keywords

Comments

The first 10 such Fibonacci numbers are 0, 1, 8, 144, 377, 121393, 39088169, 4052739537881, 1304969544928657, 420196140727489673.
Ballot & Luca (Proposition 1) show that this sequence has asymptotic density 0. - Charles R Greathouse IV, Jan 21 2014
a(43) >= 2558. Determining this term requires factoring the Lucas number L_1279. - Charles R Greathouse IV, Jan 21 2014
3002 <= a(44) <= 3302. 3302, 3698, 4898 are terms. - Chai Wah Wu, Jul 23 2020

Examples

			Fibonacci(14) = 377 = 19^2 + 4^2, so 14 is in the sequence.
		

Crossrefs

Programs

  • Mathematica
    Reap[For[n = 0, n <= 400, n = n+2, If[Reduce[Fibonacci[n] == x^2 + y^2, {x, y}, Integers] =!= False, Print[n]; Sow[n]]]][[2, 1]]
  • PARI
    is(n)=if(n%2, return(0)); my(f=factor(fibonacci(n))); for(i=1,#f~, if(f[i,1]%4==3 && f[i,2]%2, return(0))); 1 \\ Charles R Greathouse IV, Jan 21 2014
    
  • PARI
    default(factor_add_primes, 1);
    is(n)={
        if(n%2,return(0));
        my(f=fibonacci(n),t);
        if(f%4==3,return(0));
        forprime(p=2,min(log(f)^2,1e5),
            if(f%p==0,
                t=valuation(f,p);
                if(p%4==3&&t%2,return(0));
                f/=p^t;
                if(f%4==3,return(0))
            )
        );
        fordiv(n,d,
            if(d==n, break);
            t=factor(fibonacci(d))[,1];
            for(i=1,#t,
                if(t[i]%4==3 && valuation(f,t[i])%2, return(0));
                f/=t[i]^valuation(f,t[i]);
                if(f%4==3,return(0))
            )
        );
        f=factor(f);
        for(i=1,#f[,1],
            if(f[i,2]%2&&f[i,1]%4==3,return(0))
        );
        1
    }; \\ Charles R Greathouse IV, Jan 21 2014
    
  • Python
    from itertools import count, islice
    from sympy import factorint, fibonacci
    def A236264_gen(): # generator of terms
        return filter(lambda n:all(p & 3 != 3 or e & 1 == 0 for p, e in factorint(fibonacci(n)).items()),count(0,2))
    a236264_list = list(islice(A236264_gen(),10)) # Chai Wah Wu, Jun 27 2022

Formula

a(n) = 2*A124132(n-1).

Extensions

a(32)-a(42) from Charles R Greathouse IV, Jan 21 2014
a(43) from Chai Wah Wu, Jul 23 2020