A236264 Even indices of Fibonacci numbers which are the sum of two squares.
0, 2, 6, 12, 14, 26, 38, 62, 74, 86, 98, 122, 134, 146, 158, 182, 222, 254, 326, 338, 366, 398, 446, 614, 626, 698, 722, 794, 866, 1022, 1046, 1082, 1226, 1238, 1418, 1646, 1814, 2174, 2246, 2258, 2294, 2426, 2558
Offset: 1
Examples
Fibonacci(14) = 377 = 19^2 + 4^2, so 14 is in the sequence.
Links
- Christian Ballot and Florian Luca, On the equation x^2+dy^2=Fn, Acta Arith. 127 (2007), 145-155.
- Kevin O'Bryant, Which Fibonacci numbers are the sum of two squares?, MathOverflow.
Programs
-
Mathematica
Reap[For[n = 0, n <= 400, n = n+2, If[Reduce[Fibonacci[n] == x^2 + y^2, {x, y}, Integers] =!= False, Print[n]; Sow[n]]]][[2, 1]]
-
PARI
is(n)=if(n%2, return(0)); my(f=factor(fibonacci(n))); for(i=1,#f~, if(f[i,1]%4==3 && f[i,2]%2, return(0))); 1 \\ Charles R Greathouse IV, Jan 21 2014
-
PARI
default(factor_add_primes, 1); is(n)={ if(n%2,return(0)); my(f=fibonacci(n),t); if(f%4==3,return(0)); forprime(p=2,min(log(f)^2,1e5), if(f%p==0, t=valuation(f,p); if(p%4==3&&t%2,return(0)); f/=p^t; if(f%4==3,return(0)) ) ); fordiv(n,d, if(d==n, break); t=factor(fibonacci(d))[,1]; for(i=1,#t, if(t[i]%4==3 && valuation(f,t[i])%2, return(0)); f/=t[i]^valuation(f,t[i]); if(f%4==3,return(0)) ) ); f=factor(f); for(i=1,#f[,1], if(f[i,2]%2&&f[i,1]%4==3,return(0)) ); 1 }; \\ Charles R Greathouse IV, Jan 21 2014
-
Python
from itertools import count, islice from sympy import factorint, fibonacci def A236264_gen(): # generator of terms return filter(lambda n:all(p & 3 != 3 or e & 1 == 0 for p, e in factorint(fibonacci(n)).items()),count(0,2)) a236264_list = list(islice(A236264_gen(),10)) # Chai Wah Wu, Jun 27 2022
Formula
a(n) = 2*A124132(n-1).
Extensions
a(32)-a(42) from Charles R Greathouse IV, Jan 21 2014
a(43) from Chai Wah Wu, Jul 23 2020
Comments