cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A236286 a(n) = tau(n)^sigma(n) / tau(n)^n, where tau(n) = A000005(n) = the number of divisors of n and sigma(n) = A000203(n) = the sum of divisors of n.

Original entry on oeis.org

1, 2, 2, 27, 2, 4096, 2, 16384, 81, 65536, 2, 2821109907456, 2, 1048576, 262144, 30517578125, 2, 21936950640377856, 2, 131621703842267136, 4194304, 268435456, 2, 324518553658426726783156020576256, 729, 4294967296, 67108864, 6140942214464815497216, 2
Offset: 1

Views

Author

Jaroslav Krizek, Jan 21 2014

Keywords

Comments

a(n) = tau(n)^sigma_p(n), where sigma_p(n) = A001065(n) = the sum of proper divisors of n.

Examples

			a(4) = tau(4)^sigma(4) / tau(4)^4 = 3^7 /3^4 = 27.
		

Crossrefs

Cf. A000005 (tau(n)), A000203 (sigma(n)), A001065 (sigma_p(n)), A062758 (n^tau(n)), A217872 (sigma(n)^n), A236284 (tau(n)^n), A236285 (tau(n)^sigma(n)).

Programs

  • Mathematica
    Table[DivisorSigma[0, n]^[DivisorSigma[1, n] - n], {n, 1000}]
  • PARI
    s=[]; for(n=1, 30, s=concat(s, sigma(n, 0)^sigma(n)/sigma(n, 0)^n)); s \\ Colin Barker, Jan 22 2014

Formula

a(n) = A236285(n) / A236284(n) = A000005(n)^A000203(n) / A000005(n)^n = A000005(n)^A001065(n).
a(p) = 2 for p = primes (A000040).