cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A236302 Primes p such that p+8, p+86, p+864 are prime.

Original entry on oeis.org

23, 743, 983, 1163, 1373, 1613, 2663, 4013, 4643, 6113, 6863, 7583, 7673, 8513, 10313, 10853, 11243, 12503, 12713, 15233, 15263, 25733, 25763, 28703, 39623, 40763, 42743, 46133, 54623, 56093, 61643, 63353, 65003, 67733, 68813, 70373, 70913, 71933, 78893, 86453
Offset: 1

Views

Author

K. D. Bajpai, Apr 21 2014

Keywords

Comments

All the terms in the sequence are congruent to 2 mod 3.
The constants in the definition (8, 86 and 864) are the concatenation of successive even digits 8,6 and 4.

Examples

			a(1) = 23 is a prime: 23+8 = 31, 23+86 = 109 and 23+864 = 887 are also prime.
a(2) = 743 is a prime: 743+8 = 751, 743+86 = 829 and 743+864 = 1607 are also prime.
		

Crossrefs

Programs

  • Maple
    KD:= proc() local a,b,d,e,f; a:= ithprime(n); b:=a+8;d:=a+86;e:=a+864; if isprime(b)and isprime(d)and isprime(e) then return (a) :fi; end: seq(KD(), n=1..15000);
  • Mathematica
    KD = {}; Do[p = Prime[n];If[PrimeQ[p + 8] && PrimeQ[p + 86] && PrimeQ[p + 864],AppendTo[KD, p]], {n, 15000}]; KD
    c=0; p=Prime[n]; Do[If[PrimeQ[p+8]&&PrimeQ[p+86]&&PrimeQ[p+864],c=c+1;Print[c,"  ",p]], {n,1,5*10^6}]; (*b-file*)
  • PARI
    s=[]; forprime(p=2, 90000, if(isprime(p+8) && isprime(p+86) && isprime(p+864), s=concat(s, p))); s \\ Colin Barker, Apr 21 2014