A236308 Number of primes q < prime(n)/2 such that the Catalan number C(q) is a primitive root modulo prime(n).
0, 0, 1, 1, 1, 1, 1, 1, 4, 2, 1, 4, 1, 3, 3, 5, 5, 5, 2, 4, 5, 4, 10, 4, 7, 7, 4, 7, 4, 9, 5, 6, 10, 9, 7, 5, 5, 12, 12, 13, 12, 4, 10, 7, 13, 4, 7, 10, 18, 9, 14, 13, 9, 9, 15, 17, 16, 8, 9, 12, 10, 19, 13, 10, 14, 14, 13, 6, 18, 18, 14, 24, 13, 16, 9, 22, 20, 12, 23, 15
Offset: 1
Keywords
Examples
a(13) = 1 since C(7) = 429 is a primitive root modulo prime(13) = 41.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..1000
- Z.-W. Sun, New observations on primitive roots modulo primes, arXiv preprint arXiv:1405.0290 [math.NT], 2014.
Programs
-
Mathematica
f[k_]:=CatalanNumber[Prime[k]] dv[n_]:=Divisors[n] Do[m=0;Do[If[Mod[f[k],Prime[n]]==0,Goto[aa],Do[If[Mod[f[k]^(Part[dv[Prime[n]-1],i]),Prime[n]]==1,Goto[aa]],{i,1,Length[dv[Prime[n]-1]]-1}]];m=m+1;Label[aa];Continue,{k,1,PrimePi[(Prime[n]-1)/2]}];Print[n," ",m];Continue,{n,1,80}]
Comments