cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A239957 a(n) = |{0 < g < prime(n): g is a primitive root modulo prime(n) of the form k^2 + 1}|.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 2, 2, 3, 3, 1, 3, 2, 2, 3, 4, 4, 4, 2, 1, 2, 1, 3, 3, 6, 3, 3, 7, 4, 5, 2, 8, 3, 5, 6, 1, 2, 5, 8, 10, 7, 3, 2, 6, 8, 2, 3, 5, 8, 4, 7, 4, 2, 5, 8, 9, 10, 5, 8, 6, 10, 6, 4, 9, 6, 9, 5, 3, 13, 5, 8, 9, 5, 6, 8, 13, 13, 6, 6, 5
Offset: 1

Views

Author

Zhi-Wei Sun, Apr 23 2014

Keywords

Comments

Conjecture: (i) a(n) > 0 for all n > 0. In other words, every prime p has a primitive root 0 < g < p of the form k^2 + 1, where k is an integer.
(ii) If p > 3 is a prime not equal to 13, then p has a primitive root 0 < g < p which is of the form k^2 - 1, where k is a positive integer.
See also A239963 for a similar conjecture.

Examples

			a(6) = 1 since 1^2 + 1 = 2 is a primitive root modulo prime(6) = 13.
a(11) = 1 since 4^2 + 1 = 17 is a primitive root modulo prime(11) = 31.
a(20) = 1 since 8^2 + 1 = 65 is a primitive root modulo prime(20) = 71.
a(22) = 1 since 6^2 + 1 = 37 is a primitive root modulo prime(22) = 79.
a(36) = 1 since 9^2 + 1 = 82 is a primitive root modulo prime(36) = 151.
		

Crossrefs

Programs

  • Mathematica
    f[k_]:=k^2+1
    dv[n_]:=Divisors[n]
    Do[m=0;Do[Do[If[Mod[f[k]^(Part[dv[Prime[n]-1],i]),Prime[n]]==1,Goto[aa]],{i,1,Length[dv[Prime[n]-1]]-1}];m=m+1;Label[aa];Continue,{k,0,Sqrt[Prime[n]-2]}];Print[n," ",m];Continue,{n,1,80}]
  • PARI
    ispr(n, p)=my(f=factor(p-1)[, 1], m=Mod(n, p)); for(i=1, #f, if(m^(p\f[i])==1, return(0))); m^(p-1)==1
    a(n)=my(p=prime(n)); sum(k=0, sqrtint(p-2), ispr(k^2+1, p)) \\ Charles R Greathouse IV, May 01 2014

A236966 Number of primes p < prime(n)/2 such that 2^p - 1 is a primitive root modulo prime(n).

Original entry on oeis.org

0, 0, 1, 1, 1, 1, 3, 2, 1, 3, 2, 1, 2, 2, 5, 6, 3, 4, 3, 5, 4, 5, 7, 9, 3, 5, 2, 10, 7, 7, 7, 7, 9, 5, 10, 4, 5, 7, 12, 11, 14, 6, 7, 5, 10, 9, 8, 5, 12, 15, 14, 8, 12, 11, 16, 12, 16, 9, 12, 10, 10, 14, 15, 10, 12, 14, 9, 10, 21, 9, 22, 21, 11, 9, 18, 24, 20, 17, 17, 16
Offset: 1

Views

Author

Zhi-Wei Sun, Apr 22 2014

Keywords

Comments

Conjecture: a(n) > 0 for all n > 2. In other words, for any prime p > 3, there is a prime q < p/2 with the Mersenne number 2^q - 1 a primitive root modulo p.
We have verified this for all n = 3, ..., 530000.
See also the comment in A234972.

Examples

			a(12) = 1 since 17 is a prime smaller than prime(12)/2 = 37/2 with 2^(17) - 1 = 131071 a primitive root modulo prime(12) = 37.
		

Crossrefs

Programs

  • Mathematica
    f[k_]:=2^(Prime[k])-1
    dv[n_]:=Divisors[n]
    Do[m=0;Do[If[Mod[f[k],Prime[n]]==0,Goto[aa],Do[If[Mod[f[k]^(Part[dv[Prime[n]-1],i]),Prime[n]]==1,Goto[aa]],{i,1,Length[dv[Prime[n]-1]]-1}]];m=m+1;Label[aa];Continue,{k,1,PrimePi[(Prime[n]-1)/2]}];Print[n," ",m];Continue,{n,1,80}]

A237112 Number of primes p < prime(n)/2 with p! a primitive root modulo prime(n).

Original entry on oeis.org

0, 0, 1, 0, 2, 2, 1, 1, 1, 2, 2, 2, 2, 2, 4, 4, 6, 4, 2, 3, 3, 4, 7, 9, 5, 7, 5, 8, 4, 7, 6, 7, 8, 7, 11, 8, 9, 7, 13, 10, 16, 4, 7, 8, 13, 9, 8, 12, 17, 10, 14, 12, 4, 10, 14, 15, 18, 8, 9, 8, 8, 18, 6, 8, 7, 16, 9, 11, 21, 15
Offset: 1

Views

Author

Zhi-Wei Sun, Apr 22 2014

Keywords

Comments

Conjecture: a(n) > 0 for all n > 4. In other words, for any prime p > 7, there exists a prime q < p/2 such that q! is a primitive root modulo p.
See also A236306 for a similar conjecture.

Examples

			a(7) = 1 since 3 is a prime smaller than prime(7)/2 = 17/2 and 3! = 6 is a primitive root modulo prime(7) = 17.
a(9) = 1 since  5 is a prime smaller than prime(9)/2 = 23/2 and 5! = 120 is a primitive root modulo prime(9) = 23.
		

Crossrefs

Programs

  • Mathematica
    f[k_]:=(Prime[k])!
    dv[n_]:=Divisors[n]
    Do[m=0;Do[Do[If[Mod[f[k]^(Part[dv[Prime[n]-1],i]),Prime[n]]==1,Goto[aa]],{i,1,Length[dv[Prime[n]-1]]-1}];m=m+1;Label[aa];Continue,{k,1,PrimePi[(Prime[n]-1)/2]}];Print[n," ",m];Continue,{n,1,70}]

A237121 Number of primes p < prime(n)/2 such that P(p) is a primitive root modulo prime(n), where P(.) is the partition function given by A000041.

Original entry on oeis.org

0, 0, 1, 1, 2, 2, 2, 3, 3, 5, 1, 3, 4, 1, 4, 5, 5, 5, 3, 4, 6, 6, 5, 7, 6, 8, 5, 8, 5, 8, 10, 9, 9, 9, 11, 7, 6, 9, 11, 9, 14, 5, 6, 4, 10, 4, 6, 7, 12, 9, 14, 9, 8, 11, 11, 17, 23, 11, 15, 6, 13, 22, 14, 14, 11, 19, 11, 7, 22, 13
Offset: 1

Views

Author

Zhi-Wei Sun, Apr 22 2014

Keywords

Comments

Conjecture: a(n) > 0 for all n > 2. In other words, for any prime p > 3, there is a prime q < p/2 with P(q) = A000041(q) a primitive root modulo p.

Examples

			a(14) = 1 since 3 is a prime smaller than prime(14)/2 = 43/2 and P(3) = 3 is a primitive root modulo prime(14) = 43.
		

Crossrefs

Programs

  • Mathematica
    f[k_]:=PartitionsP[Prime[k]]
    dv[n_]:=Divisors[n]
    Do[m=0;Do[If[Mod[f[k],Prime[n]]==0,Goto[aa],Do[If[Mod[f[k]^(Part[dv[Prime[n]-1],i]),Prime[n]]==1,Goto[aa]],{i,1,Length[dv[Prime[n]-1]]-1}]];m=m+1;Label[aa];Continue,{k,1,PrimePi[(Prime[n]-1)/2]}];Print[n," ",m];Continue,{n,1,70}]

A239963 Number of triangular numbers below prime(n) which are also primitive roots modulo prime(n).

Original entry on oeis.org

1, 0, 1, 1, 1, 1, 3, 3, 3, 4, 2, 1, 3, 2, 3, 3, 3, 3, 1, 3, 3, 4, 5, 5, 3, 5, 4, 9, 3, 7, 6, 4, 7, 3, 9, 3, 7, 5, 10, 9, 10, 9, 5, 10, 7, 7, 2, 5, 8, 6, 8, 7, 6, 6, 12, 10, 8, 9, 7, 10, 8, 11, 6, 6, 12, 14, 8, 7, 16, 5, 11, 10, 9, 6, 14, 14, 11, 8, 14, 7
Offset: 1

Views

Author

Zhi-Wei Sun, Apr 23 2014

Keywords

Comments

Conjecture: a(n) > 0 for all n > 2. In other words, for any prime p > 3, there is a primitive root 0 < g < p of the form k*(k+1)/2, where k is a positive integer.

Examples

			a(5) = 1 since the triangular number 3*4/2 = 6 is a primitive root modulo prime(5) = 11.
a(12) = 1 since the triangular number 5*6/2 = 15 is a primitive root modulo prime(12) = 37.
a(19) = 1 since the triangular number 7*8/2 = 28 is a primitive root modulo prime(19) = 67.
		

Crossrefs

Programs

  • Mathematica
    f[k_]:=f[k]=k(k+1)/2
    dv[n_]:=dv[n]=Divisors[n]
    Do[m=0;Do[Do[If[Mod[f[k]^(Part[dv[Prime[n]-1],i]),Prime[n]]==1,Goto[aa]],{i,1,Length[dv[Prime[n]-1]]-1}];m=m+1;Label[aa];Continue,{k,1,(Sqrt[8Prime[n]-7]-1)/2}];Print[n," ",m];Continue,{n,1,80}]

A237594 Number of primes p < prime(n)/2 such that the Bell number B(p) is a primitive root modulo prime(n).

Original entry on oeis.org

0, 0, 1, 1, 2, 1, 2, 3, 1, 1, 2, 4, 2, 4, 6, 5, 7, 3, 4, 3, 4, 2, 12, 7, 3, 5, 4, 9, 5, 6, 4, 5, 12, 6, 7, 5, 9, 6, 12, 11, 13, 7, 7, 7, 14, 5, 5, 14, 14, 8, 13, 11, 7, 10, 19, 17, 16, 8, 11, 7, 7, 23, 11, 12, 10, 22, 14, 8, 22, 11, 20, 22, 13, 13, 15, 24, 27, 14, 18, 18
Offset: 1

Views

Author

Zhi-Wei Sun, Apr 22 2014

Keywords

Comments

Conjecture: a(n) > 0 for all n > 2. In other words, for any prime p > 3, there exists a prime q < p/2 such that the Bell number B(q) is a primitive root modulo p.

Examples

			a(9) = 1 since 3 is a prime smaller than prime(9)/2 = 23/2 and B(3) = 5 is a primitive root modulo prime(9) = 23.
		

Crossrefs

Programs

  • Mathematica
    f[k_]:=BellB[Prime[k]]
    dv[n_]:=Divisors[n]
    Do[m=0;Do[If[Mod[f[k],Prime[n]]==0,Goto[aa],Do[If[Mod[f[k]^(Part[dv[Prime[n]-1],i]),Prime[n]]==1,Goto[aa]],{i,1,Length[dv[Prime[n]-1]]-1}]];m=m+1;Label[aa];Continue,{k,1,PrimePi[(Prime[n]-1)/2]}];Print[n," ",m];Continue,{n,1,80}]

A246669 Catalan(prime(n)).

Original entry on oeis.org

2, 5, 42, 429, 58786, 742900, 129644790, 1767263190, 343059613650, 1002242216651368, 14544636039226909, 45950804324621742364, 10113918591637898134020, 150853479205085351660700, 33868773757191046886429490, 116157871455782434250553845880
Offset: 1

Views

Author

Vincenzo Librandi, Sep 01 2014

Keywords

Crossrefs

Programs

  • Magma
    [Catalan(NthPrime(n)): n in [1..20]];
  • Mathematica
    Table[(CatalanNumber[Prime[n]]), {n, 1, 20}]
Showing 1-7 of 7 results.