A239957 a(n) = |{0 < g < prime(n): g is a primitive root modulo prime(n) of the form k^2 + 1}|.
1, 1, 1, 1, 1, 1, 2, 2, 3, 3, 1, 3, 2, 2, 3, 4, 4, 4, 2, 1, 2, 1, 3, 3, 6, 3, 3, 7, 4, 5, 2, 8, 3, 5, 6, 1, 2, 5, 8, 10, 7, 3, 2, 6, 8, 2, 3, 5, 8, 4, 7, 4, 2, 5, 8, 9, 10, 5, 8, 6, 10, 6, 4, 9, 6, 9, 5, 3, 13, 5, 8, 9, 5, 6, 8, 13, 13, 6, 6, 5
Offset: 1
Keywords
Examples
a(6) = 1 since 1^2 + 1 = 2 is a primitive root modulo prime(6) = 13. a(11) = 1 since 4^2 + 1 = 17 is a primitive root modulo prime(11) = 31. a(20) = 1 since 8^2 + 1 = 65 is a primitive root modulo prime(20) = 71. a(22) = 1 since 6^2 + 1 = 37 is a primitive root modulo prime(22) = 79. a(36) = 1 since 9^2 + 1 = 82 is a primitive root modulo prime(36) = 151.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
f[k_]:=k^2+1 dv[n_]:=Divisors[n] Do[m=0;Do[Do[If[Mod[f[k]^(Part[dv[Prime[n]-1],i]),Prime[n]]==1,Goto[aa]],{i,1,Length[dv[Prime[n]-1]]-1}];m=m+1;Label[aa];Continue,{k,0,Sqrt[Prime[n]-2]}];Print[n," ",m];Continue,{n,1,80}]
-
PARI
ispr(n, p)=my(f=factor(p-1)[, 1], m=Mod(n, p)); for(i=1, #f, if(m^(p\f[i])==1, return(0))); m^(p-1)==1 a(n)=my(p=prime(n)); sum(k=0, sqrtint(p-2), ispr(k^2+1, p)) \\ Charles R Greathouse IV, May 01 2014
Comments