cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A239957 a(n) = |{0 < g < prime(n): g is a primitive root modulo prime(n) of the form k^2 + 1}|.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 2, 2, 3, 3, 1, 3, 2, 2, 3, 4, 4, 4, 2, 1, 2, 1, 3, 3, 6, 3, 3, 7, 4, 5, 2, 8, 3, 5, 6, 1, 2, 5, 8, 10, 7, 3, 2, 6, 8, 2, 3, 5, 8, 4, 7, 4, 2, 5, 8, 9, 10, 5, 8, 6, 10, 6, 4, 9, 6, 9, 5, 3, 13, 5, 8, 9, 5, 6, 8, 13, 13, 6, 6, 5
Offset: 1

Views

Author

Zhi-Wei Sun, Apr 23 2014

Keywords

Comments

Conjecture: (i) a(n) > 0 for all n > 0. In other words, every prime p has a primitive root 0 < g < p of the form k^2 + 1, where k is an integer.
(ii) If p > 3 is a prime not equal to 13, then p has a primitive root 0 < g < p which is of the form k^2 - 1, where k is a positive integer.
See also A239963 for a similar conjecture.

Examples

			a(6) = 1 since 1^2 + 1 = 2 is a primitive root modulo prime(6) = 13.
a(11) = 1 since 4^2 + 1 = 17 is a primitive root modulo prime(11) = 31.
a(20) = 1 since 8^2 + 1 = 65 is a primitive root modulo prime(20) = 71.
a(22) = 1 since 6^2 + 1 = 37 is a primitive root modulo prime(22) = 79.
a(36) = 1 since 9^2 + 1 = 82 is a primitive root modulo prime(36) = 151.
		

Crossrefs

Programs

  • Mathematica
    f[k_]:=k^2+1
    dv[n_]:=Divisors[n]
    Do[m=0;Do[Do[If[Mod[f[k]^(Part[dv[Prime[n]-1],i]),Prime[n]]==1,Goto[aa]],{i,1,Length[dv[Prime[n]-1]]-1}];m=m+1;Label[aa];Continue,{k,0,Sqrt[Prime[n]-2]}];Print[n," ",m];Continue,{n,1,80}]
  • PARI
    ispr(n, p)=my(f=factor(p-1)[, 1], m=Mod(n, p)); for(i=1, #f, if(m^(p\f[i])==1, return(0))); m^(p-1)==1
    a(n)=my(p=prime(n)); sum(k=0, sqrtint(p-2), ispr(k^2+1, p)) \\ Charles R Greathouse IV, May 01 2014

A239963 Number of triangular numbers below prime(n) which are also primitive roots modulo prime(n).

Original entry on oeis.org

1, 0, 1, 1, 1, 1, 3, 3, 3, 4, 2, 1, 3, 2, 3, 3, 3, 3, 1, 3, 3, 4, 5, 5, 3, 5, 4, 9, 3, 7, 6, 4, 7, 3, 9, 3, 7, 5, 10, 9, 10, 9, 5, 10, 7, 7, 2, 5, 8, 6, 8, 7, 6, 6, 12, 10, 8, 9, 7, 10, 8, 11, 6, 6, 12, 14, 8, 7, 16, 5, 11, 10, 9, 6, 14, 14, 11, 8, 14, 7
Offset: 1

Views

Author

Zhi-Wei Sun, Apr 23 2014

Keywords

Comments

Conjecture: a(n) > 0 for all n > 2. In other words, for any prime p > 3, there is a primitive root 0 < g < p of the form k*(k+1)/2, where k is a positive integer.

Examples

			a(5) = 1 since the triangular number 3*4/2 = 6 is a primitive root modulo prime(5) = 11.
a(12) = 1 since the triangular number 5*6/2 = 15 is a primitive root modulo prime(12) = 37.
a(19) = 1 since the triangular number 7*8/2 = 28 is a primitive root modulo prime(19) = 67.
		

Crossrefs

Programs

  • Mathematica
    f[k_]:=f[k]=k(k+1)/2
    dv[n_]:=dv[n]=Divisors[n]
    Do[m=0;Do[Do[If[Mod[f[k]^(Part[dv[Prime[n]-1],i]),Prime[n]]==1,Goto[aa]],{i,1,Length[dv[Prime[n]-1]]-1}];m=m+1;Label[aa];Continue,{k,1,(Sqrt[8Prime[n]-7]-1)/2}];Print[n," ",m];Continue,{n,1,80}]
Showing 1-2 of 2 results.