cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A236310 Expansion of Sum_{k>=0} x^((k+1)^2)/(1-x)^k.

Original entry on oeis.org

0, 1, 0, 0, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 8, 10, 13, 17, 22, 28, 35, 43, 52, 62, 74, 89, 108, 132, 162, 199, 244, 298, 362, 437, 524, 625, 743, 882, 1047, 1244, 1480, 1763, 2102, 2507, 2989, 3560, 4233, 5022, 5943, 7015, 8261, 9709, 11393, 13354, 15641, 18312, 21435, 25089, 29365, 34367, 40213, 47036, 54985, 64227, 74950
Offset: 0

Views

Author

Joerg Arndt, Apr 22 2014

Keywords

Comments

a(n) is the number of compositions of n such that the first part is equal to the number of parts and all parts are greater than or equal to the first part. - John Tyler Rascoe, Feb 10 2024

Examples

			From _John Tyler Rascoe_, Feb 10 2024: (Start)
The compositions for n = 9..11 are:
9:  [3,3,3], [2,7];
10: [3,4,3], [3,3,4], [2,8];
11: [3,4,4], [3,3,5], [3,5,3], [2,9].
(End)
		

Crossrefs

Cf. A098131 (g.f. Sum_{k>=0} x^(k^2)/(1-x)^k).
Cf. A219282 (g.f. Sum_{k>=0} x^(k*(k+1)/2)/(1-x)^k).
Cf. A063978 (g.f. Sum_{k>=0} x^(k^2)/(1-x)^(k+1)).

Programs

  • PARI
    N=66; q='q+O('q^N);
    gf=sum(n=0, N, q^((n+1)^2) / (1-q)^n );
    concat([0],Vec(gf))

Formula

G.f.: Sum_{k>=0} x^((k+1)^2)/(1-x)^k.
G.f.: Sum_{k>0} A(x,k) where A(x,k) = (x^k)*(x^k/(1-x))^(k-1) is the g.f. for compositions of this kind with first part k. - John Tyler Rascoe, Feb 10 2024