cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A236332 The number of orbits of 4-tuples of the dihedral group of order 2n acting on {1,2,...,n}.

Original entry on oeis.org

1, 8, 14, 36, 63, 112, 172, 260, 365, 504, 666, 868, 1099, 1376, 1688, 2052, 2457, 2920, 3430, 4004, 4631, 5328, 6084, 6916, 7813, 8792, 9842, 10980, 12195, 13504, 14896, 16388, 17969, 19656, 21438, 23332, 25327, 27440, 29660, 32004, 34461, 37048, 39754, 42596, 45563
Offset: 1

Views

Author

W. Edwin Clark, Jan 22 2014

Keywords

Comments

In other words, a(n) is the number of equivalence classes of length 4 words with an alphabet of size n where equivalence is up to rotation or reflection of the alphabet. - Andrew Howroyd, Jan 17 2020

Examples

			For n = 3 there are the following 14 orbits of 4-tuples for the group D6 = S3:
1) [[1,1,1,1], [2,2,2,2], [3,3,3,3]],
2) [[1,1,1,2], [2,2,2,3], [1,1,1,3], [3,3,3,1], [3,3,3,2], [2,2,2,1]],
3) [[1,1,2,1], [2,2,3,2], [1,1,3,1], [3,3,1,3], [3,3,2,3], [2,2,1,2]],
4) [[1,1,2,2], [2,2,3,3], [1,1,3,3], [3,3,1,1], [3,3,2,2], [2,2,1,1]],
5) [[1,1,2,3], [2,2,3,1], [1,1,3,2], [3,3,1,2], [3,3,2,1], [2,2,1,3]],
6) [[1,2,1,1], [2,3,2,2], [1,3,1,1], [3,1,3,3], [3,2,3,3], [2,1,2,2]],
7) [[1,2,1,2], [2,3,2,3], [1,3,1,3], [3,1,3,1], [3,2,3,2], [2,1,2,1]],
8) [[1,2,1,3], [2,3,2,1], [1,3,1,2], [3,1,3,2], [3,2,3,1], [2,1,2,3]],
9) [[1,2,2,1], [2,3,3,2], [1,3,3,1], [3,1,1,3], [3,2,2,3], [2,1,1,2]],
10) [[1,2,2,2], [2,3,3,3], [1,3,3,3], [3,1,1,1], [3,2,2,2], [2,1,1,1]],
11) [[1,2,2,3], [2,3,3,1], [1,3,3,2], [3,1,1,2], [3,2,2,1], [2,1,1,3]],
12) [[1,2,3,1], [2,3,1,2], [1,3,2,1], [3,1,2,3], [3,2,1,3], [2,1,3,2]],
13) [[1,2,3,2], [2,3,1,3], [1,3,2,3], [3,1,2,1], [3,2,1,2], [2,1,3,1]],
14) [[1,2,3,3], [2,3,1,1], [1,3,2,2], [3,1,2,2], [3,2,1,1], [2,1,3,3]].
		

Crossrefs

Cf. A236283 (3-tuples).

Programs

  • GAP
    a:=function(n)
    local g,orbs;
    g:=DihedralGroup(IsPermGroup,2*n);
    orbs := OrbitsDomain(g, Tuples( [ 1 .. n ], 4), OnTuples );
    return Size(orbs);
    end;;
    
  • PARI
    a(n) = {(9 + 7*(-1)^n + 2*n^3)/4} \\ Andrew Howroyd, Jan 17 2020

Formula

Conjectures from Colin Barker, Jan 22 2014: (Start)
a(n) = (9 + 7*(-1)^n + 2*n^3)/4.
G.f.: -x*(4*x^4-12*x^3+8*x^2-5*x-1) / ((x-1)^4*(x+1)).
(End)
From Andrew Howroyd, Jan 17 2020: (Start)
The above conjectures are true and can be derived from the following formulas for even and odd n.
a(n) = (n-2)*(n^2 + 2*n + 4)/2 + 8 for even n.
a(n) = (n-1)*(n^2 + n + 1)/2 + 1 for odd n.
(End)

Extensions

Terms a(21) and beyond from Andrew Howroyd, Jan 17 2020