A236332 The number of orbits of 4-tuples of the dihedral group of order 2n acting on {1,2,...,n}.
1, 8, 14, 36, 63, 112, 172, 260, 365, 504, 666, 868, 1099, 1376, 1688, 2052, 2457, 2920, 3430, 4004, 4631, 5328, 6084, 6916, 7813, 8792, 9842, 10980, 12195, 13504, 14896, 16388, 17969, 19656, 21438, 23332, 25327, 27440, 29660, 32004, 34461, 37048, 39754, 42596, 45563
Offset: 1
Examples
For n = 3 there are the following 14 orbits of 4-tuples for the group D6 = S3: 1) [[1,1,1,1], [2,2,2,2], [3,3,3,3]], 2) [[1,1,1,2], [2,2,2,3], [1,1,1,3], [3,3,3,1], [3,3,3,2], [2,2,2,1]], 3) [[1,1,2,1], [2,2,3,2], [1,1,3,1], [3,3,1,3], [3,3,2,3], [2,2,1,2]], 4) [[1,1,2,2], [2,2,3,3], [1,1,3,3], [3,3,1,1], [3,3,2,2], [2,2,1,1]], 5) [[1,1,2,3], [2,2,3,1], [1,1,3,2], [3,3,1,2], [3,3,2,1], [2,2,1,3]], 6) [[1,2,1,1], [2,3,2,2], [1,3,1,1], [3,1,3,3], [3,2,3,3], [2,1,2,2]], 7) [[1,2,1,2], [2,3,2,3], [1,3,1,3], [3,1,3,1], [3,2,3,2], [2,1,2,1]], 8) [[1,2,1,3], [2,3,2,1], [1,3,1,2], [3,1,3,2], [3,2,3,1], [2,1,2,3]], 9) [[1,2,2,1], [2,3,3,2], [1,3,3,1], [3,1,1,3], [3,2,2,3], [2,1,1,2]], 10) [[1,2,2,2], [2,3,3,3], [1,3,3,3], [3,1,1,1], [3,2,2,2], [2,1,1,1]], 11) [[1,2,2,3], [2,3,3,1], [1,3,3,2], [3,1,1,2], [3,2,2,1], [2,1,1,3]], 12) [[1,2,3,1], [2,3,1,2], [1,3,2,1], [3,1,2,3], [3,2,1,3], [2,1,3,2]], 13) [[1,2,3,2], [2,3,1,3], [1,3,2,3], [3,1,2,1], [3,2,1,2], [2,1,3,1]], 14) [[1,2,3,3], [2,3,1,1], [1,3,2,2], [3,1,2,2], [3,2,1,1], [2,1,3,3]].
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (3,-2,-2,3,-1).
Crossrefs
Cf. A236283 (3-tuples).
Programs
-
GAP
a:=function(n) local g,orbs; g:=DihedralGroup(IsPermGroup,2*n); orbs := OrbitsDomain(g, Tuples( [ 1 .. n ], 4), OnTuples ); return Size(orbs); end;;
-
PARI
a(n) = {(9 + 7*(-1)^n + 2*n^3)/4} \\ Andrew Howroyd, Jan 17 2020
Formula
Conjectures from Colin Barker, Jan 22 2014: (Start)
a(n) = (9 + 7*(-1)^n + 2*n^3)/4.
G.f.: -x*(4*x^4-12*x^3+8*x^2-5*x-1) / ((x-1)^4*(x+1)).
(End)
From Andrew Howroyd, Jan 17 2020: (Start)
The above conjectures are true and can be derived from the following formulas for even and odd n.
a(n) = (n-2)*(n^2 + 2*n + 4)/2 + 8 for even n.
a(n) = (n-1)*(n^2 + n + 1)/2 + 1 for odd n.
(End)
Extensions
Terms a(21) and beyond from Andrew Howroyd, Jan 17 2020
Comments