cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A236359 Pseudoperfect (or semiperfect) numbers in which a sum of contiguous proper divisors of n equals n.

Original entry on oeis.org

6, 18, 24, 28, 36, 42, 54, 66, 78, 102, 108, 114, 126, 132, 138, 162, 174, 186, 196, 198, 222, 234, 246, 258, 282, 288, 294, 306, 318, 324, 342, 354, 360, 366, 378, 402, 414, 426, 432, 438, 462, 474, 486, 496, 498, 504, 522, 534, 540, 546, 558, 582, 594, 600, 606, 618, 642, 654, 666, 678, 684, 690, 696, 702, 714, 726
Offset: 1

Views

Author

Matthew Schuster, Jan 23 2014

Keywords

Comments

Also includes perfect numbers.
Are there numbers that contain multiple contiguous divisor sums?

Examples

			The proper divisors of 132 are [1,2,3,4,6,11,12,22,33,44,66]; the contiguous divisor set 4,6,11,12,22,33,44 sums to 132.
		

Crossrefs

Subsequence of A005835.

Programs

  • Mathematica
    aQ[n_] := Catch@Block[{d = Most@Divisors@n, s, i=1}, s = Accumulate@d; While[s != {}, If[MemberQ[s, n], Throw@True, s = Rest[s - d[[i++]]]]]; False]; Select[ Range@ 726, aQ] (* Giovanni Resta, Jan 23 2014 *)
    Select[Range[800],MemberQ[Flatten[Table[Total/@Partition[Most[Divisors[ #]],n,1],{n,DivisorSigma[0,#]-1}]],#]&] (* Harvey P. Dale, Apr 25 2015 *)
  • PARI
    is(n)=my(d=divisors(n),i=1,j=1,s=1); while(i<#d, s+=d[i++]; while(s>n, s-=d[j]; j++); if(s==n, return(i<#d))); 0 \\ Charles R Greathouse IV, Jan 23 2014
    
  • Python
    from sympy import divisors
    A236359_list = []
    for n in range(1,10**3):
        d = divisors(n)
        d.pop()
        ld = len(d)
        if sum(d) >= n:
            s, j = d[0], 1
            for i in range(ld-1):
                while s < n and j < ld:
                    s += d[j]
                    j += 1
                if s == n:
                    A236359_list.append(n)
                    break
                j -= 1
                s -= d[i]+d[j] # Chai Wah Wu, Sep 16 2014