A236366 a(n) is the concatenation of the numbers k, 2 <= k <= 9, such that the base-k representation of n is a palindrome; a(n) = 0 if there is no such base.
23456789, 3456789, 2456789, 356789, 246789, 5789, 2689, 379, 28, 349, 0, 5, 3, 6, 24, 37, 24, 58, 0, 39, 246, 0, 3, 57, 4, 35, 28, 36, 4, 9, 25, 7, 2, 4, 6, 58, 6, 4, 0, 379, 5, 4, 6, 0, 28, 45, 0, 7, 6, 79, 24, 35, 0, 8, 46, 3, 57, 0, 4, 9, 6, 5, 248, 7, 248
Offset: 1
Examples
Let n = 29. In bases 2, 3, ..., 9 the representations of 29 are 11101_2, 1002_3, 131_4, 104_5, 45_6, 41_7, 35_8, 32_9. In this list only 131_4 is a palindrome, so a(29) = 4.
Links
- Peter J. C. Moses, Table of n, a(n) for n = 1..5000
Programs
-
Mathematica
Table[FromDigits[1+Flatten[Position[Map[Reverse[#]==#&,Map[IntegerDigits[n,#]&,Range[2,9]]],True]]],{n,50}]
-
Python
from sympy.ntheory import digits def c(n, b): d = digits(n, b)[1:]; return d == d[::-1] def a(n): return int("0"+"".join(d for d in "23456789" if c(n, int(d)))) print([a(n) for n in range(1, 66)]) # Michael S. Branicky, Sep 21 2022
Extensions
Name clarified by Jon E. Schoenfield, Sep 21 2022