cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A237264 Number of partitions of 3n into 3 parts with largest part prime.

Original entry on oeis.org

0, 2, 4, 4, 8, 7, 13, 15, 22, 21, 28, 29, 36, 35, 44, 45, 54, 55, 67, 70, 83, 84, 96, 99, 116, 119, 135, 138, 154, 154, 170, 172, 187, 189, 208, 211, 231, 235, 259, 264, 285, 286, 306, 310, 334, 337, 361, 366, 389, 390, 413, 416, 441, 443, 468, 471, 496, 498
Offset: 1

Views

Author

Wesley Ivan Hurt, Feb 10 2014

Keywords

Examples

			Count the primes in the first column for a(n).
                                               13 + 1 + 1
                                               12 + 2 + 1
                                               11 + 3 + 1
                                               10 + 4 + 1
                                                9 + 5 + 1
                                                8 + 6 + 1
                                                7 + 7 + 1
                                   10 + 1 + 1  11 + 2 + 2
                                    9 + 2 + 1  10 + 3 + 2
                                    8 + 3 + 1   9 + 4 + 2
                                    7 + 4 + 1   8 + 5 + 2
                                    6 + 5 + 1   7 + 6 + 2
                        7 + 1 + 1   8 + 2 + 2   9 + 3 + 3
                        6 + 2 + 1   7 + 3 + 2   8 + 4 + 3
                        5 + 3 + 1   6 + 4 + 2   7 + 5 + 3
                        4 + 4 + 1   5 + 5 + 2   6 + 6 + 3
            4 + 1 + 1   5 + 2 + 2   6 + 3 + 3   7 + 4 + 4
            3 + 2 + 1   4 + 3 + 2   5 + 4 + 3   6 + 5 + 4
1 + 1 + 1   2 + 2 + 2   3 + 3 + 3   4 + 4 + 4   5 + 5 + 5
   3(1)        3(2)        3(3)        3(4)        3(5)     ..   3n
---------------------------------------------------------------------
    0           2           4           4           8       ..  a(n)
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[Sum[PrimePi[i] - PrimePi[i - 1], {i, n + Floor[j/2] + 1 - Floor[1/(j + 1)], n + 2 (j + 1)}], {j, 0, n - 2}], {n, 50}]
    Table[Count[IntegerPartitions[3 n,{3}],?(PrimeQ[#[[1]]]&)],{n,60}] (* _Harvey P. Dale, Mar 06 2022 *)

Formula

a(n) = Sum_{j=0..n-2} ( Sum_{i=n + 1 + floor(j/2) - floor(1/(j + 1))..n + 2(j + 1)} A010051(i) ).

A237669 Number of prime parts in the partitions of 3n into 3 parts.

Original entry on oeis.org

0, 5, 12, 17, 29, 35, 50, 59, 77, 87, 108, 120, 144, 156, 182, 198, 228, 243, 275, 292, 327, 346, 383, 402, 443, 465, 507, 531, 578, 601, 649, 674, 722, 748, 800, 829, 886, 915, 974, 1006, 1067, 1097, 1158, 1189, 1253, 1286, 1353, 1388, 1456, 1491, 1561
Offset: 1

Views

Author

Wesley Ivan Hurt, Feb 11 2014

Keywords

Examples

			Count the primes in the partitions of 3n into 3 parts for a(n).
                                               13 + 1 + 1
                                               12 + 2 + 1
                                               11 + 3 + 1
                                               10 + 4 + 1
                                                9 + 5 + 1
                                                8 + 6 + 1
                                                7 + 7 + 1
                                   10 + 1 + 1  11 + 2 + 2
                                    9 + 2 + 1  10 + 3 + 2
                                    8 + 3 + 1   9 + 4 + 2
                                    7 + 4 + 1   8 + 5 + 2
                                    6 + 5 + 1   7 + 6 + 2
                        7 + 1 + 1   8 + 2 + 2   9 + 3 + 3
                        6 + 2 + 1   7 + 3 + 2   8 + 4 + 3
                        5 + 3 + 1   6 + 4 + 2   7 + 5 + 3
                        4 + 4 + 1   5 + 5 + 2   6 + 6 + 3
            4 + 1 + 1   5 + 2 + 2   6 + 3 + 3   7 + 4 + 4
            3 + 2 + 1   4 + 3 + 2   5 + 4 + 3   6 + 5 + 4
1 + 1 + 1   2 + 2 + 2   3 + 3 + 3   4 + 4 + 4   5 + 5 + 5
   3(1)        3(2)        3(3)        3(4)        3(5)     ..   3n
---------------------------------------------------------------------
    0           5           12          17          29      ..  a(n)
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[Sum[PrimePi[i] - PrimePi[i - 1], {i, n + Floor[j/2] + 1 - Floor[1/(j + 1)], n + 2 (j + 1)}], {j, 0, n - 2}] + Sum[i (PrimePi[i] - PrimePi[i - 1]), {i, n}] + Sum[(PrimePi[n + i] - PrimePi[n + i - 1]) (n - 2 i), {i, Floor[(n - 1)/2]}] + Sum[(PrimePi[i] - PrimePi[i - 1]) (2 n - 2 i + 1 - Floor[(n - i + 1)/2]), {i, n}], {n, 70}]
    Table[Count[Flatten[IntegerPartitions[3 n,{3}]],?PrimeQ],{n,60}] (* _Harvey P. Dale, Oct 16 2016 *)

Formula

a(n) = A237264(n) + A236762(n) + A236758(n).
Showing 1-2 of 2 results.