A236377 Real part of Sum_{k=0..n} (k + i^k)^2, where i=sqrt(-1).
1, 1, 2, 10, 35, 59, 84, 132, 213, 293, 374, 494, 663, 831, 1000, 1224, 1513, 1801, 2090, 2450, 2891, 3331, 3772, 4300, 4925, 5549, 6174, 6902, 7743, 8583, 9424, 10384, 11473, 12561, 13650, 14874, 16243, 17611, 18980, 20500, 22181, 23861, 25542, 27390
Offset: 0
Examples
For n=6, sum_(k=0)^6 (k + i^k)^2 = 84 + 6*i, therefore a(6) = 84.
Links
- Bruno Berselli, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (3,-4,4,-2,-2,4,-4,3,-1).
Crossrefs
Cf. A058373: real part of Sum_{k=0..n} (k + i)^2.
Programs
-
Magma
m:=50; R
:=PowerSeriesRing(Integers(), m); Coefficients(R!((1-2*x+3*x^2+4*x^3+11*x^4-10*x^5+9*x^6)/((1+x)*(1+x^2)^2*(1-x)^4))); -
Mathematica
LinearRecurrence[{3, -4, 4, -2, -2, 4, -4, 3, -1}, {1, 1, 2, 10, 35, 59, 84, 132, 213}, 50]
Comments