A236383 Smallest k such that k^2 is a concatenation of two numbers x and y where y = x + n^2 and x and y have the same number of digits.
428, 453, 465, 381, 369, 358, 917, 421, 394, 452, 704, 716, 442, 833, 323, 380, 347, 697, 8376, 449, 3994, 407, 439, 431, 4770, 6961, 391, 336, 3533, 4277, 7915, 36332, 7705, 4487, 3323, 8869, 8942, 3250, 4560, 7632, 90951, 7988, 4204, 3606, 8586, 72774
Offset: 1
Examples
a(11) = 704 because 704^2 = 495616 is the concatenation of 495 and 616, and 616 - 495 = 121 = 11^2.
Links
- Michel Lagneau, Table of n, a(n) for n = 1..245
Crossrefs
Cf. A030467.
Programs
-
Maple
for n from 1 to 47 do: ii:=0: for k from 1 to 10^7 while(ii=0)do : x:=convert(k^2,base,10):n1:=nops(x): if irem(n1,2)=0 then s:=sum('x[i]*10^(i-1) ', 'i'=1..n1/2): z:=convert(s,base,10): s1:=sum('x[j]*10^(j-n1/2-1) ', 'j'=n1/2+1..n1): if s-s1 = n^2 then ii:=1:printf(`%d, `,k): else fi: fi: od: od:
Extensions
Definition corrected by Giovanni Resta, Jun 24 2019
Comments