A236396 Triangle read by rows: T(n,k) = number of rooted labeled trees with n nodes and height <= k, for n >= 1, 0 <= k <= n-1.
1, 0, 2, 0, 3, 9, 0, 4, 40, 64, 0, 5, 205, 505, 625, 0, 6, 1176, 4536, 7056, 7776, 0, 7, 7399, 46249, 89929, 112609, 117649, 0, 8, 50576, 526352, 1284032, 1835072, 2056832, 2097152, 0, 9, 372537, 6604497, 20351601, 33188481, 40325121, 42683841, 43046721
Offset: 1
Examples
Triangle begins: [1], [0, 2], [0, 3, 9], [0, 4, 40, 64], [0, 5, 205, 505, 625], [0, 6, 1176, 4536, 7056, 7776], [0, 7, 7399, 46249, 89929, 112609, 117649], [0, 8, 50576, 526352, 1284032, 1835072, 2056832, 2097152], ...
Links
- Alois P. Heinz, Rows n = 1..100, flattened
- J. Riordan, Enumeration of trees by height and diameter, IBM J. Res. Dev. 4 (1960), 473-478. [broken link]
- J. Riordan, Enumeration of trees by height and diameter, IBM J. Res. Dev. 4 (1960), 473-478.
Programs
-
Maple
gf:= proc(k) gf(k):= `if`(k=0, x, x*exp(gf(k-1))) end: A:= proc(n, k) A(n, k):= n!*coeff(series(gf(k), x, n+1), x, n) end: [seq([seq(A(n, d), d=0..n-1)], n=1..12)];
-
Mathematica
gf[k_] := gf[k] = If[k == 0, x, x*E^gf[k-1]]; a[n_, k_] := n!*Coefficient[Series[gf[k], {x, 0, n+1}], x, n]; Table[Table[a[n, d], {d, 0, n-1}], {n, 1, 12}] // Flatten (* Jean-François Alcover, Mar 07 2014, after Maple *)
Comments