cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A236396 Triangle read by rows: T(n,k) = number of rooted labeled trees with n nodes and height <= k, for n >= 1, 0 <= k <= n-1.

Original entry on oeis.org

1, 0, 2, 0, 3, 9, 0, 4, 40, 64, 0, 5, 205, 505, 625, 0, 6, 1176, 4536, 7056, 7776, 0, 7, 7399, 46249, 89929, 112609, 117649, 0, 8, 50576, 526352, 1284032, 1835072, 2056832, 2097152, 0, 9, 372537, 6604497, 20351601, 33188481, 40325121, 42683841, 43046721
Offset: 1

Views

Author

N. J. A. Sloane, Jan 28 2014

Keywords

Comments

If we replace each row by its differences we get A034855.

Examples

			Triangle begins:
[1],
[0, 2],
[0, 3, 9],
[0, 4, 40, 64],
[0, 5, 205, 505, 625],
[0, 6, 1176, 4536, 7056, 7776],
[0, 7, 7399, 46249, 89929, 112609, 117649],
[0, 8, 50576, 526352, 1284032, 1835072, 2056832, 2097152],
...
		

Crossrefs

Programs

  • Maple
    gf:= proc(k) gf(k):= `if`(k=0, x, x*exp(gf(k-1))) end:
    A:= proc(n, k) A(n, k):= n!*coeff(series(gf(k), x, n+1), x, n) end:
    [seq([seq(A(n, d), d=0..n-1)], n=1..12)];
  • Mathematica
    gf[k_] := gf[k] = If[k == 0, x, x*E^gf[k-1]]; a[n_, k_] := n!*Coefficient[Series[gf[k], {x, 0, n+1}], x, n]; Table[Table[a[n, d], {d, 0, n-1}], {n, 1, 12}] // Flatten (* Jean-François Alcover, Mar 07 2014, after Maple *)