A034855
Triangle read by rows giving number of rooted labeled trees with n >= 2 nodes and height d >= 1.
Original entry on oeis.org
2, 3, 6, 4, 36, 24, 5, 200, 300, 120, 6, 1170, 3360, 2520, 720, 7, 7392, 38850, 43680, 22680, 5040, 8, 50568, 475776, 757680, 551040, 221760, 40320, 9, 372528, 6231960, 13747104, 12836880, 7136640, 2358720, 362880, 10, 2936070, 87530400, 264181680
Offset: 2
2;
3, 6;
4, 36, 24;
5, 200, 300, 120;
6, 1170, 3360, 2520, 720;
7, 7392, 38850, 43680, 22680, 5040;
- Alois P. Heinz, Rows n = 2..101, flattened
- Marko Riedel, Counting the number of rooted trees of a certain height
- Marko Riedel, Maple code for sequence (EGF)
- J. Riordan, Enumeration of trees by height and diameter, IBM J. Res. Dev. 4 (1960), 473-478. [broken link]
- J. Riordan, Enumeration of trees by height and diameter, IBM J. Res. Dev. 4 (1960), 473-478.
- J. Riordan, The enumeration of trees by height and diameter, IBM Journal 4 (1960), 473-478. (Annotated scanned copy)
- Index entries for sequences related to trees
-
gf:= proc(k) gf(k):= `if`(k=0, x, x*exp(gf(k-1))) end:
A:= proc(n, k) A(n, k):= n!*coeff(series(gf(k), x, n+1), x, n) end:
T:= (n, d)-> A(n, d) -A(n, d-1):
seq(seq(T(n, d), d=1..n-1), n=2..12); # Alois P. Heinz, Sep 21 2012
-
gf[k_] := gf[k] = If[k == 0, x, x*E^gf[k - 1]]; a[n_, k_] := n!*Coefficient[ Series[gf[k], {x, 0, n + 1}], x, n]; t[n_, d_] := a[n, d] - a[n, d - 1]; Table[t[n, d], {n, 2, 12}, {d, 1, n - 1}] // Flatten (* Jean-François Alcover, Jan 15 2013, translated from Alois P. Heinz's Maple program *)
More terms from Pab Ter (pabrlos(AT)yahoo.com), May 27 2004
A001854
Total height of all rooted trees on n labeled nodes.
Original entry on oeis.org
0, 2, 15, 148, 1785, 26106, 449701, 8927192, 200847681, 5053782070, 140679853941, 4293235236324, 142553671807729, 5116962926162738, 197459475792232725, 8152354312656732976, 358585728464893234305, 16741214317684425260142, 826842457727306803110997, 43073414675338753123113980
Offset: 1
- Rényi, A., and G. Szekeres. "On the height of trees." Journal of the Australian Mathematical Society 7.04 (1967): 497-507. See (4.7).
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
-
nn=20;a=NestList[ x Exp[#]&,x,nn];f[list_]:=Sum[list[[i]]*i,{i,1,Length[list]}];Drop[Map[f,Transpose[Table[Range[0,nn]!CoefficientList[Series[a[[i+1]]-a[[i]],{x,0,nn}],x],{i,1,nn-1}]]],1] (* Geoffrey Critzer, Mar 14 2013 *)
A234953
Normalized total height of all rooted trees on n labeled nodes.
Original entry on oeis.org
0, 1, 5, 37, 357, 4351, 64243, 1115899, 22316409, 505378207, 12789077631, 357769603027, 10965667062133, 365497351868767, 13163965052815515, 509522144541045811, 21093278144993719665, 930067462093579181119, 43518024090910884374263, 2153670733766937656155699
Offset: 1
-
gf[k_] := gf[k] = If[k == 0, x, x*E^gf[k-1]]; a[n_, k_] := n!*Coefficient[Series[gf[k], {x, 0, n+1}], x, n]; a[n_] := Sum[k*(a[n, k] - a[n, k-1]), {k, 1, n-1}]/n; Array[a, 20] (* Jean-François Alcover, Mar 18 2014, after Alois P. Heinz *)
-
from sympy import binomial
from sympy.core.cache import cacheit
@cacheit
def b(n, h): return 1 if min(n, h)==0 else sum([binomial(n - 1, j - 1)*j*b(j - 1, h - 1)*b(n - j, h) for j in range(1, n + 1)])
def T(n, k): return b(n - 1, k - 1) - b(n - 1, k - 2)
def a(n): return sum([k*T(n, k) for k in range(1, n)])
print([a(n) for n in range(1, 31)]) # Indranil Ghosh, Aug 26 2017
A235595
Triangle read by rows: the triangle in A034855, with the n-th row normalized by dividing it by n.
Original entry on oeis.org
1, 1, 2, 1, 9, 6, 1, 40, 60, 24, 1, 195, 560, 420, 120, 1, 1056, 5550, 6240, 3240, 720, 1, 6321, 59472, 94710, 68880, 27720, 5040, 1, 41392, 692440, 1527456, 1426320, 792960, 262080, 40320, 1, 293607, 8753040, 26418168, 30560544, 21213360, 9676800, 2721600, 362880, 1, 2237920, 119723130, 490458240, 691331760, 570810240, 323114400, 125798400, 30844800, 3628800
Offset: 2
Triangle begins:
1.
1, 2,
1, 9, 6,
1, 40, 60, 24,
1, 195, 560, 420, 120,
1, 1056, 5550, 6240, 3240, 720,
1, 6321, 59472, 94710, 68880, 27720, 5040,
1, 41392, 692440, 1527456,1426320, 792960, 262080, 40320,
1, 293607, 8753040, 26418168, 30560544, 21213360, 9676800, 2721600, 362880,
...
-
b:= proc(n, h) option remember; `if`(min(n, h)=0, 1, add(
binomial(n-1, j-1)*j*b(j-1, h-1)*b(n-j, h), j=1..n))
end:
T:= (n,k)-> b(n-1, k-1)-b(n-1, k-2):
seq(seq(T(n, d), d=1..n-1), n=2..12); # Alois P. Heinz, Aug 21 2017
-
gf[k_] := gf[k] = If[k == 0, x, x*E^gf[k-1]]; a[n_, k_] := n!*Coefficient[Series[gf[k], {x, 0, n+1}], x, n]; t[n_, k_] := (a[n, k] - a[n, k-1])/n; Table[t[n, k], {n, 2, 11}, {k, 1, n-1}] // Flatten (* Jean-François Alcover, Mar 18 2014, after Alois P. Heinz *)
-
from sympy import binomial
from sympy.core.cache import cacheit
@cacheit
def b(n, h): return 1 if min(n, h)==0 else sum([binomial(n - 1, j - 1)*j*b(j - 1, h - 1)*b(n - j, h) for j in range(1, n + 1)])
def T(n, k): return b(n - 1, k - 1) - b(n - 1, k - 2)
for n in range(2, 13): print([T(n, d) for d in range(1, n)]) # Indranil Ghosh, Aug 26 2017, after Maple code
Showing 1-4 of 4 results.
Comments