cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A000435 Normalized total height of all nodes in all rooted trees with n labeled nodes.

Original entry on oeis.org

0, 1, 8, 78, 944, 13800, 237432, 4708144, 105822432, 2660215680, 73983185000, 2255828154624, 74841555118992, 2684366717713408, 103512489775594200, 4270718991667353600, 187728592242564421568, 8759085548690928992256, 432357188322752488126152, 22510748754252398927872000
Offset: 1

Views

Author

Keywords

Comments

This is the sequence that started it all: the first sequence in the database!
The height h(V) of a node V in a rooted tree is its distance from the root. a(n) = Sum_{all nodes V in all n^(n-1) rooted trees on n nodes} h(V)/n.
In the trees which have [0, n-1] = (0, 1, ..., n-1) as their ordered set of nodes, the number of nodes at distance i from node 0 is f(n,i) = (n-1)...(n-i)(i+1)n^(j-1), 0 <= i < n-1, i+j = n-1 (and f(n,n-1) = (n-1)!): (n-1)...(n-i) counts the words coding the paths of length i from any node to 0, n^(j-1) counts the Pruefer codes of the rest, words build by iterated deletion of the greater node of degree 1 ... except the last one, (i+1), necessary pointing at the path. If g(n,i) = (n-1)...(n-i)n^j, i+j = n-1, f(n,i) = g(n,i) - g(n,i+1), g(n,i) = Sum_{k>=i} f(n,k), the sequence is Sum_{i=1..n-1} g(n,i). - Claude Lenormand (claude.lenormand(AT)free.fr), Jan 26 2001
If one randomly selects one ball from an urn containing n different balls, with replacement, until exactly one ball has been selected twice, the probability that this ball was also the second ball to be selected once is a(n)/n^n. See also A001865. - Matthew Vandermast, Jun 15 2004
a(n) is the number of connected endofunctions with no fixed points. - Geoffrey Critzer, Dec 13 2011
a(n) is the number of weakly connected simple digraphs on n labeled nodes where every node has out-degree 1. A digraph where all out-degrees are 1 can be called a functional digraph due to the correspondence with endofunctions. - Andrew Howroyd, Feb 06 2024

Examples

			For n = 3 there are 3^2 = 9 rooted labeled trees on 3 nodes, namely (with o denoting a node, O the root node):
   o
   |
   o     o   o
   |      \ /
   O       O
The first can be labeled in 6 ways and contains nodes at heights 1 and 2 above the root, so contributes 6*(1+2) = 18 to the total; the second can be labeled in 3 ways and contains 2 nodes at height 1 above the root, so contributes 3*2=6 to the total, giving 24 in all. Dividing by 3 we get a(3) = 24/3 = 8.
For n = 4 there are 4^3 = 64 rooted labeled trees on 4 nodes, namely (with o denoting a node, O the root node):
   o
   |
   o     o        o   o
   |     |         \ /
   o     o   o      o     o o o
   |      \ /       |      \|/
   O       O        O       O
  (1)     (2)      (3)     (4)
Tree (1) can be labeled in 24 ways and contains nodes at heights 1, 2, 3 above the root, so contributes 24*(1+2+3) = 144 to the total;
tree (2) can be labeled in 24 ways and contains nodes at heights 1, 1, 2 above the root, so contributes 24*(1+1+2) = 96 to the total;
tree (3) can be labeled in 12 ways and contains nodes at heights 1, 2, 2 above the root, so contributes 12*(1+2+2) = 60 to the total;
tree (4) can be labeled in 4 ways and contains nodes at heights 1, 1, 1 above the root, so contributes 4*(1+1+1) = 12 to the total;
giving 312 in all. Dividing by 4 we get a(4) = 312/4 = 78.
		

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A001863, A001864, A001854, A002862 (unlabeled version), A234953, A259334.
Column k=1 of A350452.

Programs

  • Maple
    A000435 := n-> (n-1)!*add (n^k/k!, k=0..n-2);
    seq(simplify((n-1)*GAMMA(n-1,n)*exp(n)),n=1..20); # Vladeta Jovovic, Jul 21 2005
  • Mathematica
    f[n_] := (n - 1)! Sum [n^k/k!, {k, 0, n - 2}]; Array[f, 18] (* Robert G. Wilson v, Aug 10 2010 *)
    nx = 18; Rest[ Range[0, nx]! CoefficientList[ Series[ LambertW[-x] - Log[1 + LambertW[-x]], {x, 0, nx}], x]] (* Robert G. Wilson v, Apr 13 2013 *)
  • PARI
    x='x+O('x^30); concat(0, Vec(serlaplace(lambertw(-x)-log(1+lambertw(-x))))) \\ Altug Alkan, Sep 05 2018
    
  • PARI
    A000435(n)=(n-1)*A001863(n) \\ M. F. Hasler, Dec 10 2018
    
  • Python
    from math import comb
    def A000435(n): return ((sum(comb(n,k)*(n-k)**(n-k)*k**k for k in range(1,(n+1>>1)))<<1) + (0 if n&1 else comb(n,m:=n>>1)*m**n))//n # Chai Wah Wu, Apr 25-26 2023

Formula

a(n) = (n-1)! * Sum_{k=0..n-2} n^k/k!.
a(n) = A001864(n)/n.
E.g.f.: LambertW(-x) - log(1+LambertW(-x)). - Vladeta Jovovic, Apr 10 2001
a(n) = A001865(n) - n^(n-1).
a(n) = A001865(n) - A000169(n). - Geoffrey Critzer, Dec 13 2011
a(n) ~ sqrt(Pi/2)*n^(n-1/2). - Vaclav Kotesovec, Aug 07 2013
a(n)/A001854(n) ~ 1/2 [See Renyi-Szekeres, (4.7)]. Also a(n) = Sum_{k=0..n-1} k*A259334(n,k). - David desJardins, Jan 20 2017
a(n) = (n-1)*A001863(n). - M. F. Hasler, Dec 10 2018

Extensions

Additional references from Valery A. Liskovets
Editorial changes by N. J. A. Sloane, Feb 03 2012
Edited by M. F. Hasler, Dec 10 2018

A034855 Triangle read by rows giving number of rooted labeled trees with n >= 2 nodes and height d >= 1.

Original entry on oeis.org

2, 3, 6, 4, 36, 24, 5, 200, 300, 120, 6, 1170, 3360, 2520, 720, 7, 7392, 38850, 43680, 22680, 5040, 8, 50568, 475776, 757680, 551040, 221760, 40320, 9, 372528, 6231960, 13747104, 12836880, 7136640, 2358720, 362880, 10, 2936070, 87530400, 264181680
Offset: 2

Views

Author

Keywords

Examples

			2;
3,    6;
4,   36,    24;
5,  200,   300,   120;
6, 1170,  3360,  2520,   720;
7, 7392, 38850, 43680, 22680, 5040;
		

Crossrefs

Programs

  • Maple
    gf:= proc(k) gf(k):= `if`(k=0, x, x*exp(gf(k-1))) end:
    A:= proc(n, k) A(n, k):= n!*coeff(series(gf(k), x, n+1), x, n) end:
    T:= (n, d)-> A(n, d) -A(n, d-1):
    seq(seq(T(n, d), d=1..n-1), n=2..12);  # Alois P. Heinz, Sep 21 2012
  • Mathematica
    gf[k_] := gf[k] = If[k == 0, x, x*E^gf[k - 1]]; a[n_, k_] := n!*Coefficient[ Series[gf[k], {x, 0, n + 1}], x, n]; t[n_, d_] := a[n, d] - a[n, d - 1]; Table[t[n, d], {n, 2, 12}, {d, 1, n - 1}] // Flatten (* Jean-François Alcover, Jan 15 2013, translated from Alois P. Heinz's Maple program *)

Formula

Riordan reference gives recurrence.

Extensions

More terms from Pab Ter (pabrlos(AT)yahoo.com), May 27 2004

A234953 Normalized total height of all rooted trees on n labeled nodes.

Original entry on oeis.org

0, 1, 5, 37, 357, 4351, 64243, 1115899, 22316409, 505378207, 12789077631, 357769603027, 10965667062133, 365497351868767, 13163965052815515, 509522144541045811, 21093278144993719665, 930067462093579181119, 43518024090910884374263, 2153670733766937656155699
Offset: 1

Views

Author

N. J. A. Sloane, Jan 14 2014

Keywords

Comments

Equals A001854(n)/n. That is, similar to A001854, except here the root always has the fixed label 1.
This was in one of my thesis notebooks from 1964 (see the scans in A000435), but because it wasn't of central importance it was never added to the OEIS.

Crossrefs

Programs

  • Mathematica
    gf[k_] := gf[k] = If[k == 0, x, x*E^gf[k-1]]; a[n_, k_] := n!*Coefficient[Series[gf[k], {x, 0, n+1}], x, n]; a[n_] := Sum[k*(a[n, k] - a[n, k-1]), {k, 1, n-1}]/n; Array[a, 20] (* Jean-François Alcover, Mar 18 2014, after Alois P. Heinz *)
  • Python
    from sympy import binomial
    from sympy.core.cache import cacheit
    @cacheit
    def b(n, h): return 1 if min(n, h)==0 else sum([binomial(n - 1, j - 1)*j*b(j - 1, h - 1)*b(n - j, h) for j in range(1, n + 1)])
    def T(n, k): return b(n - 1, k - 1) - b(n - 1, k - 2)
    def a(n): return sum([k*T(n, k) for k in range(1, n)])
    print([a(n) for n in range(1, 31)]) # Indranil Ghosh, Aug 26 2017

Formula

a(n) = Sum_{k=1..n-1} k*A034855(n,k)/n = Sum_{k=1..n-1} k*A235595(n,k).

A235595 Triangle read by rows: the triangle in A034855, with the n-th row normalized by dividing it by n.

Original entry on oeis.org

1, 1, 2, 1, 9, 6, 1, 40, 60, 24, 1, 195, 560, 420, 120, 1, 1056, 5550, 6240, 3240, 720, 1, 6321, 59472, 94710, 68880, 27720, 5040, 1, 41392, 692440, 1527456, 1426320, 792960, 262080, 40320, 1, 293607, 8753040, 26418168, 30560544, 21213360, 9676800, 2721600, 362880, 1, 2237920, 119723130, 490458240, 691331760, 570810240, 323114400, 125798400, 30844800, 3628800
Offset: 2

Views

Author

N. J. A. Sloane, Jan 14 2014

Keywords

Comments

T(n,k) is the number of forests of labeled rooted trees with n nodes and height k Cf. A210725. Equivalently, T(n,k) is the number of nilpotent partial functions on [n] with index k+1. - Geoffrey Critzer, Nov 26 2021

Examples

			Triangle begins:
1.
1, 2,
1, 9, 6,
1, 40, 60, 24,
1, 195, 560, 420, 120,
1, 1056, 5550, 6240, 3240, 720,
1, 6321, 59472, 94710, 68880, 27720, 5040,
1, 41392, 692440, 1527456,1426320, 792960, 262080, 40320,
1, 293607, 8753040, 26418168, 30560544, 21213360, 9676800, 2721600, 362880,
...
		

Crossrefs

Programs

  • Maple
    b:= proc(n, h) option remember; `if`(min(n, h)=0, 1, add(
          binomial(n-1, j-1)*j*b(j-1, h-1)*b(n-j, h), j=1..n))
        end:
    T:= (n,k)-> b(n-1, k-1)-b(n-1, k-2):
    seq(seq(T(n, d), d=1..n-1), n=2..12);  # Alois P. Heinz, Aug 21 2017
  • Mathematica
    gf[k_] := gf[k] = If[k == 0, x, x*E^gf[k-1]]; a[n_, k_] := n!*Coefficient[Series[gf[k], {x, 0, n+1}], x, n]; t[n_, k_] := (a[n, k] - a[n, k-1])/n; Table[t[n, k], {n, 2, 11}, {k, 1, n-1}] // Flatten (* Jean-François Alcover, Mar 18 2014, after Alois P. Heinz *)
  • Python
    from sympy import binomial
    from sympy.core.cache import cacheit
    @cacheit
    def b(n, h): return 1 if min(n, h)==0 else sum([binomial(n - 1, j - 1)*j*b(j - 1, h - 1)*b(n - j, h) for j in range(1, n + 1)])
    def T(n, k): return b(n - 1, k - 1) - b(n - 1, k - 2)
    for n in range(2, 13): print([T(n, d) for d in  range(1, n)]) # Indranil Ghosh, Aug 26 2017, after Maple code

Formula

A234953(n) = Sum_{k=1..n} k*T(n,k).

A236396 Triangle read by rows: T(n,k) = number of rooted labeled trees with n nodes and height <= k, for n >= 1, 0 <= k <= n-1.

Original entry on oeis.org

1, 0, 2, 0, 3, 9, 0, 4, 40, 64, 0, 5, 205, 505, 625, 0, 6, 1176, 4536, 7056, 7776, 0, 7, 7399, 46249, 89929, 112609, 117649, 0, 8, 50576, 526352, 1284032, 1835072, 2056832, 2097152, 0, 9, 372537, 6604497, 20351601, 33188481, 40325121, 42683841, 43046721
Offset: 1

Views

Author

N. J. A. Sloane, Jan 28 2014

Keywords

Comments

If we replace each row by its differences we get A034855.

Examples

			Triangle begins:
[1],
[0, 2],
[0, 3, 9],
[0, 4, 40, 64],
[0, 5, 205, 505, 625],
[0, 6, 1176, 4536, 7056, 7776],
[0, 7, 7399, 46249, 89929, 112609, 117649],
[0, 8, 50576, 526352, 1284032, 1835072, 2056832, 2097152],
...
		

Crossrefs

Programs

  • Maple
    gf:= proc(k) gf(k):= `if`(k=0, x, x*exp(gf(k-1))) end:
    A:= proc(n, k) A(n, k):= n!*coeff(series(gf(k), x, n+1), x, n) end:
    [seq([seq(A(n, d), d=0..n-1)], n=1..12)];
  • Mathematica
    gf[k_] := gf[k] = If[k == 0, x, x*E^gf[k-1]]; a[n_, k_] := n!*Coefficient[Series[gf[k], {x, 0, n+1}], x, n]; Table[Table[a[n, d], {d, 0, n-1}], {n, 1, 12}] // Flatten (* Jean-François Alcover, Mar 07 2014, after Maple *)

A291203 Number F(n,h,t) of forests of t labeled rooted trees with n vertices such that h is the maximum of 0 and the tree heights; triangle of triangles F(n,h,t), n>=0, h=0..n, t=0..n-h, read by layers, then by rows.

Original entry on oeis.org

1, 0, 1, 0, 0, 0, 1, 0, 2, 0, 0, 0, 0, 1, 0, 3, 6, 0, 6, 0, 0, 0, 0, 0, 1, 0, 4, 24, 12, 0, 36, 24, 0, 24, 0, 0, 0, 0, 0, 0, 1, 0, 5, 80, 90, 20, 0, 200, 300, 60, 0, 300, 120, 0, 120, 0, 0, 0, 0, 0, 0, 0, 1, 0, 6, 240, 540, 240, 30, 0, 1170, 3000, 1260, 120, 0, 3360, 2520, 360, 0, 2520, 720, 0, 720, 0
Offset: 0

Views

Author

Alois P. Heinz, Aug 20 2017

Keywords

Comments

Positive elements in column t=1 give A034855.
Elements in rows h=0 give A023531.
Elements in rows h=1 give A059297.
Positive row sums per layer give A235595.
Positive column sums per layer give A061356.

Examples

			n h\t: 0   1   2  3  4 5 : A235595 : A061356          : A000272
-----+-------------------+---------+------------------+--------
0 0  : 1                 :         :                  : 1
-----+-------------------+---------+------------------+--------
1 0  : 0   1             :      1  :   .              :
1 1  : 0                 :         :   1              : 1
-----+-------------------+---------+------------------+--------
2 0  : 0   0   1         :      1  :   .   .          :
2 1  : 0   2             :      2  :   .              :
2 2  : 0                 :         :   2   1          : 3
-----+-------------------+---------+------------------+--------
3 0  : 0   0   0  1      :      1  :   .   .   .      :
3 1  : 0   3   6         :      9  :   .   .          :
3 2  : 0   6             :      6  :   .              :
3 3  : 0                 :         :   9   6   1      : 16
-----+-------------------+---------+------------------+--------
4 0  : 0   0   0  0  1   :      1  :   .   .   .  .   :
4 1  : 0   4  24 12      :     40  :   .   .   .      :
4 2  : 0  36  24         :     60  :   .   .          :
4 3  : 0  24             :     24  :   .              :
4 4  : 0                 :         :  64  48  12  1   : 125
-----+-------------------+---------+------------------+--------
5 0  : 0   0   0  0  0 1 :      1  :   .   .   .  . . :
5 1  : 0   5  80 90 20   :    195  :   .   .   .  .   :
5 2  : 0 200 300 60      :    560  :   .   .   .      :
5 3  : 0 300 120         :    420  :   .   .          :
5 4  : 0 120             :    120  :   .              :
5 5  : 0                 :         : 625 500 150 20 1 : 1296
-----+-------------------+---------+------------------+--------
		

Crossrefs

Programs

  • Maple
    b:= proc(n, t, h) option remember; expand(`if`(n=0 or h=0, x^(t*n), add(
           binomial(n-1, j-1)*j*x^t*b(j-1, 0, h-1)*b(n-j, t, h), j=1..n)))
        end:
    g:= (n, h)-> b(n, 1, h)-`if`(h=0, 0, b(n, 1, h-1)):
    F:= (n, h, t)-> coeff(g(n, h), x, t):
    seq(seq(seq(F(n, h, t), t=0..n-h), h=0..n), n=0..8);
  • Mathematica
    b[n_, t_, h_] := b[n, t, h] = Expand[If[n == 0 || h == 0, x^(t*n), Sum[
         Binomial[n-1, j-1]*j*x^t*b[j-1, 0, h-1]*b[n-j, t, h], {j, 1, n}]]];
    g[n_, h_] := b[n, 1, h] - If[h == 0, 0, b[n, 1, h - 1]];
    F[n_, h_, t_] := Coefficient[g[n, h], x, t];
    Table[Table[Table[F[n, h, t], {t, 0, n - h}], {h, 0, n}], {n, 0, 8}] // Flatten (* Jean-François Alcover, Mar 17 2022, after Alois P. Heinz *)

Formula

Sum_{i=0..n} F(n,i,n-i) = A243014(n) = 1 + A038154(n).
Sum_{d=0..n} Sum_{i=0..d} F(n,i,d-i) = A000272(n+1).
Sum_{h=0..n} Sum_{t=0..n-h} t * F(n,h,t) = A089946(n-1) for n>0.
Sum_{h=0..n} Sum_{t=0..n-h} (h+1) * F(n,h,t) = A234953(n+1) for n>0.
Sum_{h=0..n} Sum_{t=0..n-h} (h+1)*(n+1) * F(n,h,t) = A001854(n+1) for n>0.
Sum_{t=0..n-1} F(n,1,t) = A235596(n+1).
F(2n,n,n) = A126804(n) for n>0.
F(n,0,n) = 1 = A000012(n).
F(n,1,1) = n = A001477(n) for n>1.
F(n,n-1,1) = n! = A000142(n) for n>0.
F(n,1,n-1) = A002378(n-1) for n>0.
F(n,2,1) = A000551(n).
F(n,3,1) = A000552(n).
F(n,4,1) = A000553(n).
F(n,1,2) = A001788(n-1) for n>2.
F(n,0,0) = A000007(n).

A216242 Triangular array read by rows: T(n,k) is the number of functions f:{1,2,...,n}->{1,2,...,n} with a height of k; n>=1, 0<=k<=n-1.

Original entry on oeis.org

1, 2, 2, 6, 15, 6, 24, 124, 84, 24, 120, 1185, 1160, 540, 120, 720, 13086, 17610, 10560, 3960, 720, 5040, 165361, 296772, 214410, 104160, 32760, 5040, 40320, 2363320, 5536440, 4692576, 2686320, 1115520, 302400, 40320, 362880, 37780497, 113680800, 111488328, 72080064, 35637840, 12942720, 3084480, 362880
Offset: 1

Views

Author

Geoffrey Critzer, Mar 14 2013

Keywords

Comments

Here, the height of a function f (represented as a directed graph) is the maximum distance from a recurrent element to any non-recurrent element. An element x in {1,2,...,n} is a recurrent element if there is some k such that f^k(x) = x where f^k(x) denotes iterated functional composition. In other words, a recurrent element is in a cycle of the functional digraph.
Row sums = n^n (A000312).
First column (k = 0) counts the n! bijective functions.
T(n,n-1) = n! (A000142).

Examples

			Triangle T(n,k) begins:
     1;
     2,       2;
     6,      15,       6;
    24,     124,      84,      24;
   120,    1185,    1160,     540,     120;
   720,   13086,   17610,   10560,    3960,    720;
  5040,  165361,  296772,  214410,  104160,  32760,   5040;
  ...
		

Crossrefs

Programs

  • Maple
    G:= proc(k) G(k):= `if`(k=0, 0, x*exp(G(k-1))) end:
    T:= (n, k)-> n!*coeff(series(1/(1-G(k+1))-1/(1-G(k)), x, n+1), x, n):
    seq(seq(T(n, k), k=0..n-1), n=1..10); # Alois P. Heinz, Mar 14 2013
  • Mathematica
    nn=8;a=NestList[x Exp[#]&,0,nn];f[list_]:=Sum[list[[i]]*i,{i,1,Length[list]}];g[list_]:=Select[list,#>0&];Map[g,Transpose[Table[Range[0,nn]!CoefficientList[Series[1/(1-a[[i+1]])-1/(1-a[[i]]),{x,0,nn}],x],{i,1,nn-1}]]]//Grid

Formula

Define G(k) recursively by G(k) = x*exp(G(k-1)) for k>0, G(0) = 0.
E.g.f. for column k is 1/(1-G(k+1)) - 1/(1-G(k)).
Showing 1-7 of 7 results.