A236399 Left factorial !p, where p = prime(n).
2, 4, 34, 874, 4037914, 522956314, 22324392524314, 6780385526348314, 1177652997443428940314, 316196664211373618851684940314, 274410818470142134209703780940314, 382630662501032184766604355445682020940314, 836850334330315506193242641144055892504420940314
Offset: 1
Links
- G. C. Greubel, Table of n, a(n) for n = 1..87
- Romeo Mestrovic, Variations of Kurepa's left factorial hypothesis, arXiv:1312.7037 [math.NT], 2013.
Crossrefs
A subsequence of A003422.
Programs
-
Magma
[(&+[Factorial(k): k in [0..(NthPrime(n)-1)]]): n in [1..15]]; // G. C. Greubel, Mar 29 2019
-
Maple
lf:=n->add(k!,k=0..n-1); [seq(lf(ithprime(n)),n=1..30)]; # 2nd program: A236399 := proc(n) A003422(ithprime(n)) ; end proc: seq(A236399(n),n=1..5) ; # R. J. Mathar, Dec 19 2016
-
Mathematica
leftFac[n_] := Sum[k!, {k, 0, n - 1}]; a[n_] := leftFac[Prime[n]]; Array[a, 13] (* Jean-François Alcover, Nov 24 2017 *)
-
PARI
vector(15, n, sum(k=0,prime(n)-1, k!)) \\ G. C. Greubel, Mar 29 2019
-
Sage
[sum(factorial(k) for k in (0..(nth_prime(n)-1))) for n in (1..15)] # G. C. Greubel, Mar 29 2019
Formula
a(n) = Sum_{k=0..prime(n)-1} k!. - G. C. Greubel, Mar 29 2019