A236400 Primes p=prime(k) such that min{r_p, p-r_p} <= 2, where r_p = A100612(k).
2, 3, 5, 7, 11, 23, 31, 67, 227, 373, 10331, 274453
Offset: 1
Links
- Romeo Mestrovic, Variations of Kurepa's left factorial hypothesis, arXiv preprint arXiv:1312.7037 [math.NT], 2013-2014.
- Miodrag Zivkovic, The number of primes sum_{i=1..n} (-1)^(n-i)*i! is finite, Math. Comp. 68 (1999), pp. 403-409.
Programs
-
Maple
A100612 := proc(n) local p,lf,kf,k ; p := ithprime(n) ; lf := 1 ; kf := 1 ; for k from 1 to p-1 do kf := modp(kf*k,p) ; lf := lf+modp(kf,p) ; end do: lf mod p ; end proc: for n from 1 do p := ithprime(n) ; rp := A100612(n) ; prp := p-rp ; if min(rp,prp) <= 2 then print(p) ; end if; end do: # R. J. Mathar, Feb 17 2014
-
Mathematica
A100612[n_] := Module[{p = Prime[n], lf = 1, kf = 1, k}, For[k = 1, k <= p - 1, k++, kf = Mod[kf*k, p]; lf = lf + Mod[kf, p]]; Mod[lf, p]]; Reap[For[n = 1, n < 40000, n++, p = Prime[n]; rp = A100612[n]; If[Min[rp, p - rp] <= 2, Print[p]; Sow[p]]]][[2, 1]] (* Jean-François Alcover, Dec 05 2017, after R. J. Mathar *)
-
Python
from sympy import isprime def afind(limit): f = 1 # (p-1)! s = 2 # sum(0! + 1! + ... + (p-1)!) for p in range(2, limit+1): if isprime(p): r_p = s%p if min(r_p, p-r_p) <= 2: print(p, end=", ") s += f*p f *= p afind(11000) # Michael S. Branicky, Jan 03 2022
Extensions
a(12) from Jean-François Alcover, Dec 05 2017
Comments