cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A236400 Primes p=prime(k) such that min{r_p, p-r_p} <= 2, where r_p = A100612(k).

Original entry on oeis.org

2, 3, 5, 7, 11, 23, 31, 67, 227, 373, 10331, 274453
Offset: 1

Views

Author

N. J. A. Sloane, Jan 29 2014

Keywords

Comments

No further terms < 5*10^6. - Michael S. Branicky, Jan 03 2022

Crossrefs

Programs

  • Maple
    A100612 := proc(n)
        local p,lf,kf,k ;
        p := ithprime(n) ;
        lf := 1 ;
        kf := 1 ;
        for k from 1 to p-1 do
            kf := modp(kf*k,p) ;
            lf := lf+modp(kf,p) ;
        end do:
        lf mod p ;
    end proc:
    for n from 1 do
        p := ithprime(n) ;
        rp := A100612(n) ;
        prp := p-rp ;
        if min(rp,prp) <= 2 then
            print(p) ;
        end if;
    end do: # R. J. Mathar, Feb 17 2014
  • Mathematica
    A100612[n_] := Module[{p = Prime[n], lf = 1, kf = 1, k}, For[k = 1, k <= p - 1, k++, kf = Mod[kf*k, p]; lf = lf + Mod[kf, p]]; Mod[lf, p]];
    Reap[For[n = 1, n < 40000, n++, p = Prime[n]; rp = A100612[n]; If[Min[rp, p - rp] <= 2, Print[p]; Sow[p]]]][[2, 1]] (* Jean-François Alcover, Dec 05 2017, after R. J. Mathar *)
  • Python
    from sympy import isprime
    def afind(limit):
        f = 1 # (p-1)!
        s = 2 # sum(0! + 1! + ... + (p-1)!)
        for p in range(2, limit+1):
            if isprime(p):
                r_p = s%p
                if min(r_p, p-r_p) <= 2:
                    print(p, end=", ")
            s += f*p
            f *= p
    afind(11000) # Michael S. Branicky, Jan 03 2022

Extensions

a(12) from Jean-François Alcover, Dec 05 2017