A236406 Triangle read by rows: number of (1-2-3)-avoiding permutations on n letters with k peaks.
1, 1, 2, 3, 2, 4, 10, 5, 32, 5, 6, 84, 42, 7, 198, 210, 14, 8, 438, 816, 168, 9, 932, 2727, 1152, 42, 10, 1936, 8250, 5940, 660, 11, 3962, 23276, 25630, 5775, 132, 12, 8034, 62400, 97812, 37180, 2574, 13, 16200, 160953, 341224, 196625, 27456, 429, 14, 32556, 402906, 1111656, 905086, 212212, 10010
Offset: 0
Examples
Triangle begins: 1; 1; 2; 3, 2; 4, 10; 5, 32, 5; 6, 84, 42; 7, 198, 210, 14; 8, 438, 816, 168; 9, 932, 2727, 1152, 42; 10, 1936, 8250, 5940, 660; ...
Links
- Alois P. Heinz, Rows n = 0..120, flattened
- A. M. Baxter, Refining enumeration schemes to count according to permutation statistics, arXiv preprint arXiv:1401.0337 [math.CO], 2014.
- M. Bukata, R. Kulwicki, N. Lewandowski, L. Pudwell, J. Roth, and T. Wheeland, Distributions of Statistics over Pattern-Avoiding Permutations, arXiv preprint arXiv:1812.07112 [math.CO], 2018.
- L. Pudwell, On the distribution of peaks (and other statistics), 2018.
Programs
-
Mathematica
m = maxExponent = 15; G = -(-2 z^3 q^2 + 4z^3 q - 2z^3 - 2z^2 q + 2z^2 - 1 + Sqrt[-4z^2 q + 4z^2 - 4z + 1])/(2z (z q - z + 1)^2); CoefficientList[# + O[q]^m, q]& /@ CoefficientList[G + O[z]^m, z]// Flatten (* Jean-François Alcover, Aug 06 2018 *)
Formula
G.f.: G(q,z) = - (-2z^3q^2+4z^3q-2z^3-2z^2q+2z^2-1+sqrt(-4z^2q+4z^2-4z+1))/(2z(zq-z+1)^2). (See the Pudwell link above.)
Extensions
More terms from Alois P. Heinz, Apr 26 2018
Comments