cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A236406 Triangle read by rows: number of (1-2-3)-avoiding permutations on n letters with k peaks.

Original entry on oeis.org

1, 1, 2, 3, 2, 4, 10, 5, 32, 5, 6, 84, 42, 7, 198, 210, 14, 8, 438, 816, 168, 9, 932, 2727, 1152, 42, 10, 1936, 8250, 5940, 660, 11, 3962, 23276, 25630, 5775, 132, 12, 8034, 62400, 97812, 37180, 2574, 13, 16200, 160953, 341224, 196625, 27456, 429, 14, 32556, 402906, 1111656, 905086, 212212, 10010
Offset: 0

Views

Author

N. J. A. Sloane, Jan 31 2014

Keywords

Comments

This is a convolution of A091156 with itself (see the Pudwell link below).

Examples

			Triangle begins:
   1;
   1;
   2;
   3,    2;
   4,   10;
   5,   32,    5;
   6,   84,   42;
   7,  198,  210,   14;
   8,  438,  816,  168;
   9,  932, 2727, 1152,  42;
  10, 1936, 8250, 5940, 660;
  ...
		

Crossrefs

Row sums give A000108.

Programs

  • Mathematica
    m = maxExponent = 15;
    G = -(-2 z^3 q^2 + 4z^3 q - 2z^3 - 2z^2 q + 2z^2 - 1 + Sqrt[-4z^2 q + 4z^2 - 4z + 1])/(2z (z q - z + 1)^2);
    CoefficientList[# + O[q]^m, q]& /@ CoefficientList[G + O[z]^m, z]// Flatten (* Jean-François Alcover, Aug 06 2018 *)

Formula

T(2*n+2,n) = A276666(n+2) = (n+1)*A000108(n+2). - Alois P. Heinz, Apr 27 2018
G.f.: G(q,z) = - (-2z^3q^2+4z^3q-2z^3-2z^2q+2z^2-1+sqrt(-4z^2q+4z^2-4z+1))/(2z(zq-z+1)^2). (See the Pudwell link above.)

Extensions

More terms from Alois P. Heinz, Apr 26 2018