A236417 a(n) = |{0 < k < n: p = phi(k)/2 + phi(n-k)/12 + 1 and A047967(p) are both prime}|.
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 2, 0, 0, 2, 1, 0, 1, 0, 3, 1, 0, 1, 1, 1, 2, 1, 2, 0, 1, 2, 2, 2, 1, 2, 1, 1, 3, 1, 1, 4, 2, 0, 1, 3, 2, 2, 0, 2, 2, 4, 2, 3, 0, 3, 2
Offset: 1
Keywords
Examples
a(36) = 1 since phi(23)/2 + phi(13)/12 + 1 = 13 with A047967(13) = 83 prime. a(71) = 1 since phi(43)/2 + phi(28)/12 + 1 = 23 with A047967(23) = 1151 prime.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..10000
- Z.-W. Sun, Problems on combinatorial properties of primes, arXiv:1402.6641, 2014
Programs
-
Mathematica
pq[n_]:=PrimeQ[n]&&PrimeQ[PartitionsP[n]-PartitionsQ[n]] f[n_,k_]:=EulerPhi[k]/2+EulerPhi[n-k]/12+1 a[n_]:=Sum[If[pq[f[n,k]],1,0],{k,1,n-1}] Table[a[n],{n,1,100}]
Comments