A236413 Positive integers m with p(m)^2 + q(m)^2 prime, where p(.) is the partition function (A000041) and q(.) is the strict partition function (A000009).
1, 2, 3, 4, 6, 17, 24, 37, 44, 95, 121, 162, 165, 247, 263, 601, 714, 742, 762, 804, 1062, 1144, 1149, 1323, 1508, 1755, 1833, 1877, 2330, 2380, 2599, 3313, 3334, 3368, 3376, 3395, 3504, 3688, 3881, 4294, 4598, 4611, 5604, 5696, 5764, 5988, 6552, 7206, 7540, 7689
Offset: 1
Keywords
Examples
a(1) = 1 since p(1)^2 + q(1)^2 = 1^2 + 1^2 = 2 is prime. a(2) = 2 since p(2)^2 + q(2)^2 = 2^2 + 1^2 = 5 is prime. a(3) = 3 since p(3)^2 + q(3)^2 = 3^2 + 2^2 = 13 is prime.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..200
- Z.-W. Sun, Problems on combinatorial properties of primes, arXiv:1402.6641, 2014
Crossrefs
Programs
-
Mathematica
pq[n_]:=PrimeQ[PartitionsP[n]^2+PartitionsQ[n]^2] n=0;Do[If[pq[m],n=n+1;Print[n," ",m]],{m,1,10000}]
Comments