A236441 Möbius inversion of A235342.
0, 1, 0, 1, -2, 0, -1, 1, 0, 0, -2, 0, -2, 0, 0, 1, -2, 0, -1, 0, 0, 0, 2, 0, -2, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, -1, 0, 0, 0, 1, 0, 0, 0, 0, 0, -1, 0, -1, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, -2, 0, 0, 0, 0, 0, -3, 0, 0, 0, 0, 0, 7, 0, 0, 0, -4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -3, 0, 0, 0, 5, 0, 1, 0, 0, 0, -2, 0, -2, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, -2
Offset: 1
Keywords
Examples
a(1)=0 since 1 is not a prime power. a(2)=b(2)=1 since 2=2! and b(2!)=1. a(3)=b(3)=0 since 3=3!/2! and b(3!/2!)=b(3!)-b(2!)=1-1=0. a(4)=b(2)=1 (above). a(5)=b(5)=-2 since 5=5!/(3!2!2!) and b(5!/(3!2!2!))=1-3=-2. a(6)=0 since 6 is not a prime power.
Links
- Antti Karttunen, Table of n, a(n) for n = 1..5041
- Alexander Riasanovsky, Sage program
Crossrefs
Möbius inversion of A235342.
Formula
For n > 0, a(n) = Sum_{d|n} b(d)*mu(n/d) where b(n) = A235342(n).
Extensions
Data section extended and b-file computed with Riasanovsky's Sage program by Antti Karttunen, Mar 28 2017
Comments